Math Problem Statement

If A = [ 2 −3/ −4 6 ], B = [8 4/ 5 5], and C = [5 −2/ 3 1 ]. a. Verify that AB = AC and yet B ≠ C.

Solution

To verify that AB=ACAB = AC while BCB \neq C, we will compute ABAB, ACAC, and check the equality AB=ACAB = AC. Then, we compare BB and CC to ensure they are not equal.

Given:

  • A=[2346]A = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix},
  • B=[8455]B = \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix},
  • C=[5231]C = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}.

Step 1: Compute ABAB

AB=[2346][8455]AB = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix} The resulting entries for ABAB are computed as follows: Row 1, Col 1: (2)(8)+(3)(5)=1615=1\text{Row 1, Col 1: } (2)(8) + (-3)(5) = 16 - 15 = 1 Row 1, Col 2: (2)(4)+(3)(5)=815=7\text{Row 1, Col 2: } (2)(4) + (-3)(5) = 8 - 15 = -7 Row 2, Col 1: (4)(8)+(6)(5)=32+30=2\text{Row 2, Col 1: } (-4)(8) + (6)(5) = -32 + 30 = -2 Row 2, Col 2: (4)(4)+(6)(5)=16+30=14\text{Row 2, Col 2: } (-4)(4) + (6)(5) = -16 + 30 = 14 Thus, AB=[17214]AB = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix}

Step 2: Compute ACAC

AC=[2346][5231]AC = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix} The resulting entries for ACAC are computed as follows: Row 1, Col 1: (2)(5)+(3)(3)=109=1\text{Row 1, Col 1: } (2)(5) + (-3)(3) = 10 - 9 = 1 Row 1, Col 2: (2)(2)+(3)(1)=43=7\text{Row 1, Col 2: } (2)(-2) + (-3)(1) = -4 - 3 = -7 Row 2, Col 1: (4)(5)+(6)(3)=20+18=2\text{Row 2, Col 1: } (-4)(5) + (6)(3) = -20 + 18 = -2 Row 2, Col 2: (4)(2)+(6)(1)=8+6=14\text{Row 2, Col 2: } (-4)(-2) + (6)(1) = 8 + 6 = 14 Thus, AC=[17214]AC = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix}

Step 3: Verify AB=ACAB = AC

From the calculations: AB=[17214],AC=[17214]AB = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix}, \quad AC = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix} Since the matrices are identical, AB=ACAB = AC.

Step 4: Verify BCB \neq C

B=[8455],C=[5231]B = \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix} Clearly, BCB \neq C, as their corresponding entries are not equal.

Conclusion:

We have verified that AB=ACAB = AC and yet BCB \neq C.

Do you want a detailed breakdown of any part? Let me know!


5 Related Questions:

  1. What property of matrix multiplication explains why AB=ACAB = AC even when BCB \neq C?
  2. Can you generalize conditions under which AB=ACAB = AC but BCB \neq C?
  3. How does the determinant of a matrix like AA influence such results?
  4. If AA is invertible, would AB=ACAB = AC still imply B=CB = C? Why or why not?
  5. What happens when we extend this analysis to non-square matrices?

Tip:

Always check the properties of the left-hand matrix AA, such as singularity or rank, when dealing with equations involving matrix products!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Equality of Matrices
Matrix Properties

Formulas

Matrix Multiplication: AB[i][j] = Σ (A[i][k] * B[k][j])
Equality of Matrices: Two matrices are equal if all their corresponding elements are equal

Theorems

Non-Invertibility and Matrix Multiplication

Suitable Grade Level

Grades 10-12