Math Problem Statement

Sebuah pinjaman akan segera dilunasi dengan sistem anuitas bulanan. Jika pinjaman sebesar Rp 10.000.000,00 akan dilunasi selama 1 tahun dengan suku bunga sekitar 2% per bulan. Tentukan: a. Cicilan tiap bulannya b. Besar angsuran pada bulan ke-5 c. Besar bunga pada bulan ke-4

Solution

To solve the problem in the image regarding the monthly annuity system, let's break it down:

Given Data:

  • Principal Loan (P): Rp 10,000,000
  • Interest Rate (i): 2% per month = 0.02
  • Duration (n): 1 year = 12 months

Formula for Monthly Annuity Payment (A):

A=Pi1(1+i)nA = \frac{P \cdot i}{1 - (1 + i)^{-n}}

Step-by-Step Solution:

a. Monthly Installment (A)

  1. Substituting the values: A=10,000,0000.021(1+0.02)12A = \frac{10,000,000 \cdot 0.02}{1 - (1 + 0.02)^{-12}}

  2. Simplify the denominator: (1+0.02)12=1.02120.7854(1 + 0.02)^{-12} = 1.02^{-12} \approx 0.7854 10.7854=0.21461 - 0.7854 = 0.2146

  3. Solve for AA: A=10,000,0000.020.2146=200,0000.2146931,925.74A = \frac{10,000,000 \cdot 0.02}{0.2146} = \frac{200,000}{0.2146} \approx 931,925.74

    Monthly Installment (A): Rp 931,926


b. Principal Portion in the 5th Month

  1. The interest portion for any month is calculated as: Interest Payment=Outstanding Balancei\text{Interest Payment} = \text{Outstanding Balance} \cdot i

  2. Principal portion is: Principal Payment=AInterest Payment\text{Principal Payment} = A - \text{Interest Payment}

  3. Outstanding balance after each month can be calculated using: Balancek=A(1+i)n(1+i)ki\text{Balance}_{k} = A \cdot \frac{(1 + i)^n - (1 + i)^k}{i} For the 4th month (k=4k = 4), calculate the balance before the 5th month: Balance4=931,926(1.02)12(1.02)40.02\text{Balance}_{4} = 931,926 \cdot \frac{(1.02)^{12} - (1.02)^4}{0.02}

    • (1.02)121.2682(1.02)^{12} \approx 1.2682
    • (1.02)41.0824(1.02)^4 \approx 1.0824

    Substituting: Balance4=931,9261.26821.08240.02931,9269.7899,118,961\text{Balance}_{4} = 931,926 \cdot \frac{1.2682 - 1.0824}{0.02} \approx 931,926 \cdot 9.789 \approx 9,118,961

    Interest for the 5th month: Interest5=Balance40.02=9,118,9610.02=182,379\text{Interest}_{5} = \text{Balance}_{4} \cdot 0.02 = 9,118,961 \cdot 0.02 = 182,379

    Principal for the 5th month: Principal5=AInterest5=931,926182,379=749,547\text{Principal}_{5} = A - \text{Interest}_{5} = 931,926 - 182,379 = 749,547

    Principal Portion (5th Month): Rp 749,547


c. Interest Portion in the 4th Month

Using the same approach, calculate the balance before the 4th month (k=3k = 3): Balance3=931,9261.2682(1.02)30.02\text{Balance}_{3} = 931,926 \cdot \frac{1.2682 - (1.02)^3}{0.02}

  • (1.02)31.0612(1.02)^3 \approx 1.0612

Substituting: Balance3=931,9261.26821.06120.02931,92610.359,641,937\text{Balance}_{3} = 931,926 \cdot \frac{1.2682 - 1.0612}{0.02} \approx 931,926 \cdot 10.35 \approx 9,641,937

Interest for the 4th month: Interest4=Balance30.02=9,641,9370.02=192,839\text{Interest}_{4} = \text{Balance}_{3} \cdot 0.02 = 9,641,937 \cdot 0.02 = 192,839

Interest Portion (4th Month): Rp 192,839


Final Answers:

a. Monthly Installment: Rp 931,926
b. Principal in the 5th Month: Rp 749,547
c. Interest in the 4th Month: Rp 192,839


Do you want a breakdown of any part, or should I calculate additional terms? Here are 5 related questions:

  1. How is the outstanding balance calculated at each month?
  2. How do changes in the interest rate affect the monthly installment?
  3. What is the total amount of interest paid over the loan term?
  4. How can an early repayment be factored into this calculation?
  5. What if the loan is extended to 18 months instead of 12?

Tip: Use a financial calculator or spreadsheet for repetitive annuity calculations to save time and reduce errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Annuity System
Monthly Installments
Loan Repayment

Formulas

Monthly Annuity Payment A = (P * i) / (1 - (1 + i)^-n)
Interest Payment = Outstanding Balance * i
Principal Payment = A - Interest Payment
Outstanding Balance after k months = A * ((1 + i)^n - (1 + i)^k) / i

Theorems

Annuity Loan Repayment Formula

Suitable Grade Level

Grades 11-12