Math Problem Statement
Sebuah pulau berada 1 km di utara dari suatu titik di pantai. Seorang pengunjung berada di kabin di pantai yang berada 2 km sebelah barat titik tersebut. Pengunjung tersebut ingin pergi ke pulau tersebut. Misalkan ia dapat berlari dengan laju 20 km/jam dan berenang dengan laju 10 km/jam. Berapa jauh ia harus berlari sebelum berenang untuk meminimumkan waktu mencapai pulau tersebut?
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Optimization
Calculus
Geometry
Formulas
Jarak lari = |x + 2|
Jarak berenang = √(x^2 + 1)
Waktu tempuh total = (|x + 2|) / 20 + (√(x^2 + 1)) / 10
Theorems
Pythagoras Theorem
Differentiation for optimization
Suitable Grade Level
Grades 11-12 or early university
Related Recommendation
Optimization Problem: Minimizing Travel Time from Beach to Island
Optimization Problem: Minimizing Time to Reach an Island by Running and Swimming
Optimizing Travel Time Between a Cabin and an Island Using Running and Swimming
Optimization Problem: Minimizing Travel Time Between a Boat and a Shoreline Restaurant
Optimizing Travel Time Across a River with Swimming and Running