Math Problem Statement
Sebuah pulau berada 1 km di utara dari suatu titik di pantai. Seorang pengunjung berada di kabin di pantai yang berada 2 km sebelah barat titik tersebut. Pengunjung tersebut ingin pergi ke pulau tersebut. Misalkan ia dapat berlari dengan laju 20 km/jam dan berenang dengan laju 10 km/jam. Berapa jauh ia harus berlari sebelum berenang untuk meminimumkan waktu mencapai pulau tersebut?
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Optimization
Calculus
Pythagoras Theorem
Formulas
Total time formula T(x) = x/20 + √((2 - x)^2 + 1^2)/10
Pythagoras distance formula d = √((2 - x)^2 + 1^2)
First derivative of total time T'(x) = 1/20 - (2 - x) / (10√((2 - x)^2 + 1^2))
Theorems
Pythagoras Theorem
Optimization using first derivatives
Suitable Grade Level
Grades 11-12
Related Recommendation
Minimizing Travel Time to an Island: Running and Swimming Problem
Optimization Problem: Minimizing Time to Reach an Island by Running and Swimming
Optimizing Travel Time Across a River with Swimming and Running
Optimization Problem: Minimizing Travel Time Between a Boat and a Shoreline Restaurant
Optimizing Travel Time Between a Cabin and an Island Using Running and Swimming