Math Problem Statement

Calculate the matrix products A · D and D · A for matrix A and diagonal matrix D.

Solution

Let's solve this step by step.

Given:

  1. Matrix AA: -3 & 1 & -2 \\ 2 & -3 & 3 \\ -1 & 2 & 3 \end{pmatrix}$$
  2. Diagonal matrix DD: -2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

We are tasked to calculate ADA \cdot D and DAD \cdot A.


Calculation of ADA \cdot D:

To compute ADA \cdot D, each row of AA is multiplied by the corresponding diagonal entry in DD. This simplifies to scaling the columns of AA by the diagonal entries of DD.

-3 & 1 & -2 \\ 2 & -3 & 3 \\ -1 & 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$ Result: $$A \cdot D = \begin{pmatrix} (-3)(-2) & (1)(0) & (-2)(3) \\ (2)(-2) & (-3)(0) & (3)(3) \\ (-1)(-2) & (2)(0) & (3)(3) \end{pmatrix}$$ Simplify: $$A \cdot D = \begin{pmatrix} 6 & 0 & -6 \\ -4 & 0 & 9 \\ 2 & 0 & 9 \end{pmatrix}$$ --- ### Calculation of $$D \cdot A$$: To compute $$D \cdot A$$, each column of $$A$$ is scaled by the corresponding diagonal entry in $$D$$. $$D \cdot A = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} -3 & 1 & -2 \\ 2 & -3 & 3 \\ -1 & 2 & 3 \end{pmatrix}$$ Result: $$D \cdot A = \begin{pmatrix} (-2)(-3) & (-2)(1) & (-2)(-2) \\ (0)(2) & (0)(-3) & (0)(3) \\ (3)(-1) & (3)(2) & (3)(3) \end{pmatrix}$$ Simplify: $$D \cdot A = \begin{pmatrix} 6 & -2 & 4 \\ 0 & 0 & 0 \\ -3 & 6 & 9 \end{pmatrix}$$ --- ### Final Results: 1. $$A \cdot D = \begin{pmatrix} 6 & 0 & -6 \\ -4 & 0 & 9 \\ 2 & 0 & 9 \end{pmatrix}$$ 2. $$D \cdot A = \begin{pmatrix} 6 & -2 & 4 \\ 0 & 0 & 0 \\ -3 & 6 & 9 \end{pmatrix}$$ Would you like further details on the calculations or have any specific questions? --- #### 5 Related Questions: 1. How do diagonal matrices affect matrix multiplication in general? 2. What are the properties of diagonal matrices in multiplication? 3. How can you compute the determinant of a product of matrices like $$A \cdot D$$? 4. What is the computational complexity of matrix multiplication for general matrices versus diagonal matrices? 5. What is the geometric interpretation of scaling rows or columns in matrix multiplication? #### Tip: When multiplying by a diagonal matrix, focus on scaling the rows or columns, making the computation much simpler!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Diagonal Matrices
Linear Algebra

Formulas

Matrix multiplication formula: (AB)_{ij} = ∑_k A_{ik}B_{kj}

Theorems

Diagonal matrices simplify matrix multiplication by scaling rows or columns.

Suitable Grade Level

Grades 11-12 or College Level