Math Problem Statement

Find the inverse of two linear transformations: T1: R^2 -> R^2 and T2: R^3 -> R^3.

Solution

Let's solve the given problems by finding the inverses of the linear transformations provided.

Problem (a)

The linear transformation T1:R2R2T_1: \mathbb{R}^2 \to \mathbb{R}^2 is given by: T1(x,y)=(2x+5y,6x+16y)T_1(x, y) = (2x + 5y, 6x + 16y)

To find the inverse transformation T11(x,y)T_1^{-1}(x, y), we need to express the variables xx and yy in terms of the output coordinates.

  1. Represent the transformation in matrix form: T1(x,y)=[25616][xy]T_1(x, y) = \begin{bmatrix} 2 & 5 \\ 6 & 16 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}

  2. Find the inverse of the matrix A=[25616]A = \begin{bmatrix} 2 & 5 \\ 6 & 16 \end{bmatrix}.

The inverse of a 2x2 matrix A=[abcd]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} is: A1=1adbc[dbca]A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}

  1. Compute the determinant of AA: det(A)=(2)(16)(5)(6)=3230=2\text{det}(A) = (2)(16) - (5)(6) = 32 - 30 = 2

  2. The inverse matrix A1A^{-1} is: A1=12[16562]=[85231]A^{-1} = \frac{1}{2} \begin{bmatrix} 16 & -5 \\ -6 & 2 \end{bmatrix} = \begin{bmatrix} 8 & -\frac{5}{2} \\ -3 & 1 \end{bmatrix}

  3. Thus, the inverse transformation T11(x,y)T_1^{-1}(x, y) is: T11(x,y)=(8x52y,3x+y)T_1^{-1}(x, y) = \left( 8x - \frac{5}{2}y, -3x + y \right)

Problem (b)

The linear transformation T2:R3R3T_2: \mathbb{R}^3 \to \mathbb{R}^3 is given by: T2(x,y,z)=(x+2z,2x+y,2y+z)T_2(x, y, z) = (x + 2z, 2x + y, 2y + z)

To find the inverse transformation T21(x,y,z)T_2^{-1}(x, y, z), we again need to find the inverse of the corresponding matrix.

  1. Represent the transformation in matrix form: T2(x,y,z)=[102210021][xyz]T_2(x, y, z) = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}

  2. Find the inverse of matrix B=[102210021]B = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}.

  3. Compute the determinant of BB: det(B)=1(1102)0(2100)+2(2210)=10+8=9\text{det}(B) = 1(1 \cdot 1 - 0 \cdot 2) - 0(2 \cdot 1 - 0 \cdot 0) + 2(2 \cdot 2 - 1 \cdot 0) = 1 - 0 + 8 = 9

  4. Find the adjugate of matrix BB and multiply by 1det(B)\frac{1}{\text{det}(B)} to get B1B^{-1}.

  5. The inverse matrix B1B^{-1} is calculated as: B1=19[124242211]B^{-1} = \frac{1}{9} \begin{bmatrix} 1 & 2 & -4 \\ 2 & 4 & -2 \\ 2 & 1 & 1 \end{bmatrix}

  6. Therefore, the inverse transformation T21(x,y,z)T_2^{-1}(x, y, z) is: T21(x,y,z)=(19x+29y49z,29x+49y29z,29x+19y+19z)T_2^{-1}(x, y, z) = \left( \frac{1}{9}x + \frac{2}{9}y - \frac{4}{9}z, \frac{2}{9}x + \frac{4}{9}y - \frac{2}{9}z, \frac{2}{9}x + \frac{1}{9}y + \frac{1}{9}z \right)

Would you like more details on any step or have any questions?

Related Questions:

  1. What is the geometric interpretation of a linear transformation and its inverse?
  2. How do you find the inverse of a 3x3 matrix using cofactor expansion?
  3. What properties must a matrix have to be invertible?
  4. How can linear transformations be used in computer graphics?
  5. What is the significance of the determinant in linear transformations?

Tip: The determinant of a matrix not only helps in finding its inverse but also provides information about the scaling factor of the transformation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Inverse Matrices
Determinants

Formulas

Inverse of 2x2 matrix: A^{-1} = (1/det(A)) * [[d, -b], [-c, a]]
Inverse of 3x3 matrix using adjugate and determinant

Theorems

Matrix Inversion Theorem
Determinant Properties

Suitable Grade Level

Undergraduate (Math)