Math Problem Statement

Let a linear map $T:R^2 -> R^3$ defined by $T\begin{pmatrix}2\1\end{pmatrix}=\begin{pmatrix}2\3\-3\end{pmatrix}$, $T\begin{pmatrix}1\2\end{pmatrix}=\begin{pmatrix}-2\4\0\end{pmatrix}$.

Then $T\begin{pmatrix}1\-4\end{pmatrix}$ is equal to

a. $\begin{pmatrix}{r}0\4\end{pmatrix}$

b. $\begin{pmatrix}{r}6\4\0\end{pmatrix}$

c. $\begin{pmatrix}{r}10\-6\-6\end{pmatrix}$

d. $\begin{pmatrix}{r}2\0\2\end{pmatrix}$

e. $\begin{pmatrix}{r}-8\4\8\end{pmatrix}$

Solution

We have already determined that: T(14)=2T(21)3T(12)T \begin{pmatrix} 1 \\ -4 \end{pmatrix} = 2T \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 3T \begin{pmatrix} 1 \\ 2 \end{pmatrix}

Using the given transformations: T(21)=(233)T \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ -3 \end{pmatrix} T(12)=(240)T \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ 0 \end{pmatrix}

Substituting these into our equation: T(14)=2(233)3(240)T \begin{pmatrix} 1 \\ -4 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 3 \\ -3 \end{pmatrix} - 3 \begin{pmatrix} -2 \\ 4 \\ 0 \end{pmatrix} =(466)(6120)= \begin{pmatrix} 4 \\ 6 \\ -6 \end{pmatrix} - \begin{pmatrix} -6 \\ 12 \\ 0 \end{pmatrix} =(4+661260)= \begin{pmatrix} 4 + 6 \\ 6 - 12 \\ -6 - 0 \end{pmatrix} =(1066)= \begin{pmatrix} 10 \\ -6 \\ -6 \end{pmatrix}

Therefore, T(14)=(1066)T \begin{pmatrix} 1 \\ -4 \end{pmatrix} = \begin{pmatrix} 10 \\ -6 \\ -6 \end{pmatrix}, which corresponds to option c.

Thus, the correct answer is:

c. (1066)\begin{pmatrix} 10 \\ -6 \\ -6 \end{pmatrix}

Do you want more details or have any questions?

Here are five more questions you could ask:

  1. How do you find the image of a linear transformation?
  2. What is the difference between linear independence and linear dependence?
  3. How do you calculate the rank of a matrix?
  4. What is the method to find the inverse of a 2x2 matrix?
  5. How do you solve a system of equations using Cramer's rule?

Tip: When dealing with linear transformations, always express the vector you need to transform as a linear combination of the given basis vectors. This makes it easier to apply the transformation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear transformations
Matrix operations

Formulas

-

Theorems

-

Suitable Grade Level

College level