Math Problem Statement

f(x)=

−2x−10

g, of, x, equals, x, squared, plus, 5, x, plus, 9

g(x)=

x2+5x+9

Find: , g, of, f, of, x

Find: g(f(x))

Solution

To find g(f(x))g(f(x)), we need to substitute the function f(x)f(x) into the function g(x)g(x).

Given:

  • f(x)=2x10f(x) = -2x - 10
  • g(x)=x2+5x+9g(x) = x^2 + 5x + 9

Steps:

  1. First, substitute f(x)=2x10f(x) = -2x - 10 into g(x)g(x): g(f(x))=g(2x10)g(f(x)) = g(-2x - 10)

  2. Now substitute 2x10-2x - 10 for xx in the expression for g(x)g(x): g(2x10)=(2x10)2+5(2x10)+9g(-2x - 10) = (-2x - 10)^2 + 5(-2x - 10) + 9

  3. Expand the terms: (2x10)2=(4x2+40x+100)(-2x - 10)^2 = (4x^2 + 40x + 100) 5(2x10)=10x505(-2x - 10) = -10x - 50

  4. Now, substitute these expanded values back into the equation: g(2x10)=4x2+40x+10010x50+9g(-2x - 10) = 4x^2 + 40x + 100 - 10x - 50 + 9

  5. Combine like terms: g(2x10)=4x2+(40x10x)+(10050+9)g(-2x - 10) = 4x^2 + (40x - 10x) + (100 - 50 + 9) g(2x10)=4x2+30x+59g(-2x - 10) = 4x^2 + 30x + 59

Thus, g(f(x))=4x2+30x+59g(f(x)) = 4x^2 + 30x + 59.

Would you like further details or explanations?

Here are some related questions to explore:

  1. How do you compute g(f(x))g(f(x)) for different types of functions?
  2. What are the steps for finding f(g(x))f(g(x))?
  3. How do transformations affect the composition of functions?
  4. Can g(f(x))g(f(x)) be used to model real-world scenarios?
  5. How would g(f(x))g(f(x)) change if f(x)f(x) were a different linear function?

Tip: Always expand terms carefully in compositions to avoid mistakes in signs or coefficients!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Quadratic Functions
Algebra

Formulas

f(x) = -2x - 10
g(x) = x^2 + 5x + 9
g(f(x)) = g(-2x - 10) = 4x^2 + 30x + 59

Theorems

Function Composition

Suitable Grade Level

Grades 9-12