Math Problem Statement

find f . g and g . f. 1.f(x)=3x-2; g(x) =1/3 (x+2) 2.f(x)=4x;g(x)=x^2-1 3.f(x)=-x^2+1;g(x)=x

Solution

Let's solve each problem step by step by finding both fgf \circ g and gfg \circ f, which represent the compositions of functions f(x)f(x) and g(x)g(x).

1. f(x)=3x2f(x) = 3x - 2 and g(x)=13(x+2)g(x) = \frac{1}{3}(x + 2)

  • Find fgf \circ g: f(g(x))=f(13(x+2))f(g(x)) = f\left(\frac{1}{3}(x + 2)\right) Substitute g(x)g(x) into f(x)f(x): f(13(x+2))=3(13(x+2))2f\left(\frac{1}{3}(x + 2)\right) = 3\left(\frac{1}{3}(x + 2)\right) - 2 Simplify: f(g(x))=(x+2)2=xf(g(x)) = (x + 2) - 2 = x So, fg=xf \circ g = x.

  • Find gfg \circ f: g(f(x))=g(3x2)g(f(x)) = g(3x - 2) Substitute f(x)f(x) into g(x)g(x): g(3x2)=13((3x2)+2)g(3x - 2) = \frac{1}{3}((3x - 2) + 2) Simplify: g(f(x))=13(3x)=xg(f(x)) = \frac{1}{3}(3x) = x So, gf=xg \circ f = x.

2. f(x)=4xf(x) = 4x and g(x)=x21g(x) = x^2 - 1

  • Find fgf \circ g: f(g(x))=f(x21)f(g(x)) = f(x^2 - 1) Substitute g(x)g(x) into f(x)f(x): f(x21)=4(x21)f(x^2 - 1) = 4(x^2 - 1) Simplify: f(g(x))=4x24f(g(x)) = 4x^2 - 4 So, fg=4x24f \circ g = 4x^2 - 4.

  • Find gfg \circ f: g(f(x))=g(4x)g(f(x)) = g(4x) Substitute f(x)f(x) into g(x)g(x): g(4x)=(4x)21g(4x) = (4x)^2 - 1 Simplify: g(f(x))=16x21g(f(x)) = 16x^2 - 1 So, gf=16x21g \circ f = 16x^2 - 1.

3. f(x)=x2+1f(x) = -x^2 + 1 and g(x)=xg(x) = x

  • Find fgf \circ g: f(g(x))=f(x)f(g(x)) = f(x) Since g(x)=xg(x) = x, this is just f(x)f(x): f(g(x))=x2+1f(g(x)) = -x^2 + 1 So, fg=x2+1f \circ g = -x^2 + 1.

  • Find gfg \circ f: g(f(x))=g(x2+1)g(f(x)) = g(-x^2 + 1) Since g(x)=xg(x) = x, this is simply: g(f(x))=x2+1g(f(x)) = -x^2 + 1 So, gf=x2+1g \circ f = -x^2 + 1.

Summary:

  1. f(x)=3x2f(x) = 3x - 2, g(x)=13(x+2)g(x) = \frac{1}{3}(x + 2)

    • fg=xf \circ g = x
    • gf=xg \circ f = x
  2. f(x)=4xf(x) = 4x, g(x)=x21g(x) = x^2 - 1

    • fg=4x24f \circ g = 4x^2 - 4
    • gf=16x21g \circ f = 16x^2 - 1
  3. f(x)=x2+1f(x) = -x^2 + 1, g(x)=xg(x) = x

    • fg=x2+1f \circ g = -x^2 + 1
    • gf=x2+1g \circ f = -x^2 + 1

Would you like further details or have any questions? Here are 5 related questions to consider:

  1. What is the general definition of function composition?
  2. How do we verify if two functions are inverses using composition?
  3. Can fgf \circ g and gfg \circ f be equal for all functions?
  4. What happens to the domain and range when composing two functions?
  5. Can you find the inverse functions of f(x)=3x2f(x) = 3x - 2 and g(x)=13(x+2)g(x) = \frac{1}{3}(x + 2)?

Tip: When composing functions, always substitute one function entirely into the other, replacing every occurrence of xx.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Algebra
Quadratic Functions
Linear Functions

Formulas

f(g(x)) = f(x)
g(f(x)) = g(x)
f(x) = 3x - 2
g(x) = 1/3(x + 2)
f(x) = 4x
g(x) = x^2 - 1
f(x) = -x^2 + 1
g(x) = x

Theorems

Function Composition Theorem

Suitable Grade Level

Grades 9-12