Math Problem Statement

f(x)= x 2 +6x−2 g, of, x, equals, 2, x, minus, 10 g(x)= 2x−10 Find: , f, of, g, of, x Find: f(g(x))

Solution

We are given two functions:

  1. f(x)=x2+6x2f(x) = x^2 + 6x - 2
  2. g(x)=2x10g(x) = 2x - 10

To find f(g(x))f(g(x)), we need to substitute g(x)g(x) into f(x)f(x).

Step-by-step:

  1. First, express f(g(x))f(g(x)): f(g(x))=f(2x10)f(g(x)) = f(2x - 10) This means that wherever there is an xx in f(x)f(x), we replace it with 2x102x - 10.

  2. Now substitute 2x102x - 10 into f(x)=x2+6x2f(x) = x^2 + 6x - 2: f(2x10)=(2x10)2+6(2x10)2f(2x - 10) = (2x - 10)^2 + 6(2x - 10) - 2

  3. Expand the terms: (2x10)2=(2x)22(2x)(10)+(10)2=4x240x+100(2x - 10)^2 = (2x)^2 - 2(2x)(10) + (10)^2 = 4x^2 - 40x + 100 6(2x10)=12x606(2x - 10) = 12x - 60

  4. Combine everything: f(2x10)=4x240x+100+12x602f(2x - 10) = 4x^2 - 40x + 100 + 12x - 60 - 2

  5. Simplify the expression: f(2x10)=4x228x+38f(2x - 10) = 4x^2 - 28x + 38

Thus, f(g(x))=4x228x+38f(g(x)) = 4x^2 - 28x + 38.

Would you like more details or have any questions about this? Here are 5 questions related to this process:

  1. How do we simplify quadratic expressions like (2x10)2(2x - 10)^2?
  2. What is the importance of substituting one function into another in calculus?
  3. Can we find the inverse of f(g(x))f(g(x))?
  4. What happens if we find g(f(x))g(f(x)) instead of f(g(x))f(g(x))?
  5. How can we graph f(g(x))f(g(x)) and interpret its behavior?

Tip: When substituting functions, ensure that you correctly handle each variable and expand carefully to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Function Composition
Quadratic Equations

Formulas

Function Composition: f(g(x)) means substituting g(x) into f(x)
Quadratic Expansion: (a + b)^2 = a^2 + 2ab + b^2

Theorems

Function Composition

Suitable Grade Level

Grades 10-12