Math Problem Statement

Find the exact value of each expression: (a) cos(105°) · sin(75°), (b) sin(75°) + sin(15°).

Solution

Let's solve each expression step by step.

(a) cos(105)sin(75)\cos(105^\circ) \cdot \sin(75^\circ)

We can break down the angles using known identities or exact trigonometric values:

  • cos(105)=cos(18075)=sin(75)\cos(105^\circ) = \cos(180^\circ - 75^\circ) = -\sin(75^\circ) (This uses the identity cos(180x)=sin(x)\cos(180^\circ - x) = -\sin(x).)

Now we have: cos(105)sin(75)=(sin(75))sin(75)=sin2(75)\cos(105^\circ) \cdot \sin(75^\circ) = (-\sin(75^\circ)) \cdot \sin(75^\circ) = -\sin^2(75^\circ)

Using the exact value sin(75)=sin(9015)=cos(15)\sin(75^\circ) = \sin(90^\circ - 15^\circ) = \cos(15^\circ), we know: cos(15)=6+24\cos(15^\circ) = \frac{\sqrt{6} + \sqrt{2}}{4}

So: sin2(75)=(6+24)2=8+21216=4+34\sin^2(75^\circ) = \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2 = \frac{8 + 2\sqrt{12}}{16} = \frac{4 + \sqrt{3}}{4}

Thus, the value of cos(105)sin(75)\cos(105^\circ) \cdot \sin(75^\circ) becomes: 4+34-\frac{4 + \sqrt{3}}{4}

(b) sin(75)+sin(15)\sin(75^\circ) + \sin(15^\circ)

We can use the sum-to-product identity here: sin(A)+sin(B)=2sin(A+B2)cos(AB2)\sin(A) + \sin(B) = 2 \sin\left(\frac{A+B}{2}\right) \cdot \cos\left(\frac{A-B}{2}\right) For A=75A = 75^\circ and B=15B = 15^\circ, we get: sin(75)+sin(15)=2sin(75+152)cos(75152)\sin(75^\circ) + \sin(15^\circ) = 2 \sin\left(\frac{75^\circ + 15^\circ}{2}\right) \cdot \cos\left(\frac{75^\circ - 15^\circ}{2}\right) =2sin(45)cos(30)= 2 \sin(45^\circ) \cdot \cos(30^\circ) We know:

  • sin(45)=22\sin(45^\circ) = \frac{\sqrt{2}}{2}
  • cos(30)=32\cos(30^\circ) = \frac{\sqrt{3}}{2}

Thus: sin(75)+sin(15)=22232=62\sin(75^\circ) + \sin(15^\circ) = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}

Final Answers:

  • (a) cos(105)sin(75)=4+34\cos(105^\circ) \cdot \sin(75^\circ) = -\frac{4 + \sqrt{3}}{4}
  • (b) sin(75)+sin(15)=62\sin(75^\circ) + \sin(15^\circ) = \frac{\sqrt{6}}{2}

Would you like more details or have any questions?

Here are 5 related questions for practice:

  1. What is the exact value of sin(105)\sin(105^\circ)?
  2. Simplify cos(75)cos(15)\cos(75^\circ) \cdot \cos(15^\circ).
  3. Use a sum or difference identity to find sin(90)\sin(90^\circ).
  4. Calculate cos(120)sin(60)\cos(120^\circ) \cdot \sin(60^\circ).
  5. Derive the value of sin(45)+cos(45)\sin(45^\circ) + \cos(45^\circ).

Tip: Always remember to check if sum or difference identities can simplify trigonometric expressions before directly calculating values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Exact Values
Sum-to-Product Identities

Formulas

cos(180° - x) = -sin(x)
Sum-to-Product Identity: sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2)

Theorems

Sum-to-Product Identities
Trigonometric Identities

Suitable Grade Level

Grades 10-12