Find the exact value of each expression: (a) cos(105°) · sin(75°), (b) sin(75°) + sin(15°).
Solution
Let's solve each expression step by step.
(a) cos(105∘)⋅sin(75∘)
We can break down the angles using known identities or exact trigonometric values:
cos(105∘)=cos(180∘−75∘)=−sin(75∘)
(This uses the identity cos(180∘−x)=−sin(x).)
Now we have:
cos(105∘)⋅sin(75∘)=(−sin(75∘))⋅sin(75∘)=−sin2(75∘)
Using the exact value sin(75∘)=sin(90∘−15∘)=cos(15∘), we know:
cos(15∘)=46+2
So:
sin2(75∘)=(46+2)2=168+212=44+3
Thus, the value of cos(105∘)⋅sin(75∘) becomes:
−44+3
(b) sin(75∘)+sin(15∘)
We can use the sum-to-product identity here:
sin(A)+sin(B)=2sin(2A+B)⋅cos(2A−B)
For A=75∘ and B=15∘, we get:
sin(75∘)+sin(15∘)=2sin(275∘+15∘)⋅cos(275∘−15∘)=2sin(45∘)⋅cos(30∘)
We know:
sin(45∘)=22
cos(30∘)=23
Thus:
sin(75∘)+sin(15∘)=2⋅22⋅23=26
Final Answers:
(a) cos(105∘)⋅sin(75∘)=−44+3
(b) sin(75∘)+sin(15∘)=26
Would you like more details or have any questions?
Here are 5 related questions for practice:
What is the exact value of sin(105∘)?
Simplify cos(75∘)⋅cos(15∘).
Use a sum or difference identity to find sin(90∘).
Calculate cos(120∘)⋅sin(60∘).
Derive the value of sin(45∘)+cos(45∘).
Tip: Always remember to check if sum or difference identities can simplify trigonometric expressions before directly calculating values.