Math Problem Statement

sin105 + cos105

Solution

To solve sin(105)+cos(105)\sin(105^\circ) + \cos(105^\circ), we can break it down using trigonometric identities.

Step 1: Use sum identities

The sum of sine and cosine functions can be simplified using the following identity:

sinx+cosx=2sin(x+45)\sin x + \cos x = \sqrt{2} \sin\left(x + 45^\circ\right)

So, let's apply this to x=105x = 105^\circ:

sin(105)+cos(105)=2sin(105+45)\sin(105^\circ) + \cos(105^\circ) = \sqrt{2} \sin(105^\circ + 45^\circ)

This simplifies to:

sin(105)+cos(105)=2sin(150)\sin(105^\circ) + \cos(105^\circ) = \sqrt{2} \sin(150^\circ)

Step 2: Evaluate sin(150)\sin(150^\circ)

Now, recall that sin(150)=sin(30)=12\sin(150^\circ) = \sin(30^\circ) = \frac{1}{2}.

Thus:

sin(105)+cos(105)=2×12=22\sin(105^\circ) + \cos(105^\circ) = \sqrt{2} \times \frac{1}{2} = \frac{\sqrt{2}}{2}

Final Answer:

sin(105)+cos(105)=22\sin(105^\circ) + \cos(105^\circ) = \frac{\sqrt{2}}{2}


Would you like more details on this solution? Here are 5 related questions you might find helpful:

  1. What is the exact value of sin(105)\sin(105^\circ) and cos(105)\cos(105^\circ)?
  2. How can I apply the sum-to-product identities for trigonometric functions?
  3. How do the values of sine and cosine behave for angles greater than 9090^\circ?
  4. Can this method be used for angles other than 105°? How?
  5. How can I use a calculator to verify this result?

Tip: Using sum or difference identities for trigonometric functions simplifies calculations, especially when dealing with non-standard angles like 105°.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sum of Sine and Cosine

Formulas

sin(x) + cos(x) = √2 * sin(x + 45°)

Theorems

Sum of sine and cosine identity

Suitable Grade Level

Grades 9-11