Math Problem Statement

Without the use of a calculator, evaluate the value of (cos 75° + cos 15°) / (sin 75° - sin 15°)^2.

Solution

To evaluate the expression

(cos75+cos15sin75sin15)2\left( \frac{\cos 75^\circ + \cos 15^\circ}{\sin 75^\circ - \sin 15^\circ} \right)^2

without using a calculator, we can use trigonometric identities for sum and difference of cosines and sines. Let’s solve it step by step:


1. Simplify the numerator: cos75+cos15\cos 75^\circ + \cos 15^\circ

Use the sum-to-product identity for cosines: cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)

Here, A=75A = 75^\circ and B=15B = 15^\circ. So: cos75+cos15=2cos(75+152)cos(75152)\cos 75^\circ + \cos 15^\circ = 2 \cos\left(\frac{75^\circ + 15^\circ}{2}\right) \cos\left(\frac{75^\circ - 15^\circ}{2}\right) =2cos(45)cos(30)= 2 \cos(45^\circ) \cos(30^\circ)

Now, substitute the exact values: cos(45)=22,cos(30)=32\cos(45^\circ) = \frac{\sqrt{2}}{2}, \quad \cos(30^\circ) = \frac{\sqrt{3}}{2} cos75+cos15=22232=62\cos 75^\circ + \cos 15^\circ = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}


2. Simplify the denominator: sin75sin15\sin 75^\circ - \sin 15^\circ

Use the difference-to-product identity for sines: sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right)

Here, A=75A = 75^\circ and B=15B = 15^\circ. So: sin75sin15=2cos(75+152)sin(75152)\sin 75^\circ - \sin 15^\circ = 2 \cos\left(\frac{75^\circ + 15^\circ}{2}\right) \sin\left(\frac{75^\circ - 15^\circ}{2}\right) =2cos(45)sin(30)= 2 \cos(45^\circ) \sin(30^\circ)

Now, substitute the exact values: cos(45)=22,sin(30)=12\cos(45^\circ) = \frac{\sqrt{2}}{2}, \quad \sin(30^\circ) = \frac{1}{2} sin75sin15=22212=22\sin 75^\circ - \sin 15^\circ = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{2}}{2}


3. Form the fraction:

The fraction becomes: cos75+cos15sin75sin15=6222=62\frac{\cos 75^\circ + \cos 15^\circ}{\sin 75^\circ - \sin 15^\circ} = \frac{\frac{\sqrt{6}}{2}}{\frac{\sqrt{2}}{2}} = \frac{\sqrt{6}}{\sqrt{2}}

Simplify: 62=62=3\frac{\sqrt{6}}{\sqrt{2}} = \sqrt{\frac{6}{2}} = \sqrt{3}


4. Square the result:

Finally, square the fraction: (cos75+cos15sin75sin15)2=(3)2=3\left(\frac{\cos 75^\circ + \cos 15^\circ}{\sin 75^\circ - \sin 15^\circ}\right)^2 = (\sqrt{3})^2 = 3


Final Answer:

3\boxed{3}


Would you like further clarification or practice on similar problems? Here are related questions:

  1. Can you derive the sum-to-product and difference-to-product identities?
  2. What are the exact values of common trigonometric functions like cos15\cos 15^\circ or sin75\sin 75^\circ?
  3. How would you approach this problem geometrically?
  4. Could you verify this result using another trigonometric identity?
  5. How does this problem relate to the unit circle?

Tip: Always double-check your exact values for common angles when solving without a calculator!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sum-to-Product Identities
Exact Values of Trigonometric Functions

Formulas

cos A + cos B = 2 cos((A + B) / 2) cos((A - B) / 2)
sin A - sin B = 2 cos((A + B) / 2) sin((A - B) / 2)

Theorems

Trigonometric Identities

Suitable Grade Level

Grades 10-12