Math Problem Statement

Find the exact value of sin(105°) - sin(15°) and cos(52.5°) * cos(7.5°).

Solution

Let's solve the two given trigonometric expressions step by step.

(a) sin105sin15\sin 105^\circ - \sin 15^\circ

We can use the sum-to-product identities for sine functions: sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos \left( \frac{A + B}{2} \right) \sin \left( \frac{A - B}{2} \right)

For A=105A = 105^\circ and B=15B = 15^\circ:

sin105sin15=2cos(105+152)sin(105152)\sin 105^\circ - \sin 15^\circ = 2 \cos \left( \frac{105^\circ + 15^\circ}{2} \right) \sin \left( \frac{105^\circ - 15^\circ}{2} \right) =2cos(1202)sin(902)= 2 \cos \left( \frac{120^\circ}{2} \right) \sin \left( \frac{90^\circ}{2} \right) =2cos60sin45= 2 \cos 60^\circ \sin 45^\circ

Now, using the known values:

cos60=12,sin45=22\cos 60^\circ = \frac{1}{2}, \quad \sin 45^\circ = \frac{\sqrt{2}}{2}

Substituting these:

sin105sin15=2×12×22=22\sin 105^\circ - \sin 15^\circ = 2 \times \frac{1}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}

So, the exact value of sin105sin15\sin 105^\circ - \sin 15^\circ is: 22\boxed{\frac{\sqrt{2}}{2}}

(b) cos52.5cos7.5\cos 52.5^\circ \cos 7.5^\circ

We use the product-to-sum identities for cosine functions: cosAcosB=12[cos(A+B)+cos(AB)]\cos A \cos B = \frac{1}{2} [\cos (A + B) + \cos (A - B)]

For A=52.5A = 52.5^\circ and B=7.5B = 7.5^\circ:

cos52.5cos7.5=12[cos(52.5+7.5)+cos(52.57.5)]\cos 52.5^\circ \cos 7.5^\circ = \frac{1}{2} \left[ \cos(52.5^\circ + 7.5^\circ) + \cos(52.5^\circ - 7.5^\circ) \right] =12[cos60+cos45]= \frac{1}{2} \left[ \cos 60^\circ + \cos 45^\circ \right]

Now, using the known values:

cos60=12,cos45=22\cos 60^\circ = \frac{1}{2}, \quad \cos 45^\circ = \frac{\sqrt{2}}{2}

Substituting these:

cos52.5cos7.5=12(12+22)\cos 52.5^\circ \cos 7.5^\circ = \frac{1}{2} \left( \frac{1}{2} + \frac{\sqrt{2}}{2} \right) =12×1+22=1+24= \frac{1}{2} \times \frac{1 + \sqrt{2}}{2} = \frac{1 + \sqrt{2}}{4}

So, the exact value of cos52.5cos7.5\cos 52.5^\circ \cos 7.5^\circ is: 1+24\boxed{\frac{1 + \sqrt{2}}{4}}


Would you like any further details or explanations?

5 Related Questions:

  1. How do you derive sum-to-product identities in trigonometry?
  2. Can you explain other product-to-sum identities for different trigonometric functions?
  3. What are the common trigonometric values for angles like 30°, 45°, and 60°?
  4. How can you simplify trigonometric expressions using identities?
  5. How can trigonometric identities help in solving real-life problems?

Tip:

Always try to memorize common trigonometric values (e.g., sin30\sin 30^\circ, cos45\cos 45^\circ) to speed up your calculations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sum-to-Product Identities
Product-to-Sum Identities

Formulas

sin A - sin B = 2 cos((A + B)/2) sin((A - B)/2)
cos A * cos B = (1/2) [cos(A + B) + cos(A - B)]

Theorems

Sum-to-Product Identities
Product-to-Sum Identities

Suitable Grade Level

Grades 10-12