Math Problem Statement

Evaluate the integral \(\int_{0}^{t} \frac{1}{\sqrt{4 - x}} \, dx\).

Solution

The integral shown is:

0t14xdx\int_{0}^{t} \frac{1}{\sqrt{4 - x}} \, dx

Solution:

To solve this, we use substitution techniques. The denominator suggests the use of a trigonometric substitution.

Step 1: Substitution

Let: x=4sin2θso thatdx=8sinθcosθdθx = 4 \sin^2\theta \quad \text{so that} \quad dx = 8 \sin\theta \cos\theta \, d\theta and note that: 4x=44sin2θ=4cos2θ4 - x = 4 - 4 \sin^2\theta = 4 \cos^2\theta Thus: 4x=2cosθ\sqrt{4 - x} = 2 \cos\theta

Step 2: Rewrite the integral

Substituting into the integral: 14xdx=12cosθ(8sinθcosθ)dθ\int \frac{1}{\sqrt{4 - x}} \, dx = \int \frac{1}{2 \cos\theta} (8 \sin\theta \cos\theta) \, d\theta Simplify: =4sinθdθ= \int 4 \sin\theta \, d\theta

Step 3: Integrate

The integral of 4sinθ4 \sin\theta is: 4sinθdθ=4cosθ+C\int 4 \sin\theta \, d\theta = -4 \cos\theta + C

Step 4: Back-substitute

From the substitution x=4sin2θx = 4 \sin^2\theta, we know that: sinθ=x4=x2andcosθ=1sin2θ=1x4=4x4=4x2\sin\theta = \sqrt{\frac{x}{4}} = \frac{\sqrt{x}}{2} \quad \text{and} \quad \cos\theta = \sqrt{1 - \sin^2\theta} = \sqrt{1 - \frac{x}{4}} = \sqrt{\frac{4 - x}{4}} = \frac{\sqrt{4 - x}}{2} Thus: cosθ=4x4=4x2\cos\theta = \sqrt{\frac{4 - x}{4}} = \frac{\sqrt{4 - x}}{2}

Step 5: Evaluate the definite integral

Using the limits x=0x = 0 to x=tx = t:

  • At x=0x = 0: sinθ=0    θ=0\sin\theta = 0 \implies \theta = 0
  • At x=tx = t: sinθ=t2\sin\theta = \frac{\sqrt{t}}{2}

The integral becomes: 0t14xdx=4cosθ0arcsin(t2)\int_{0}^{t} \frac{1}{\sqrt{4 - x}} \, dx = -4 \cos\theta \bigg|_{0}^{\arcsin\left(\frac{\sqrt{t}}{2}\right)}

Substitute: =4(4t2)+41= -4 \left(\frac{\sqrt{4 - t}}{2}\right) + 4 \cdot 1

Simplify: 0t14xdx=424t\int_{0}^{t} \frac{1}{\sqrt{4 - x}} \, dx = 4 - 2 \sqrt{4 - t}

Final Answer:

0t14xdx=424t\int_{0}^{t} \frac{1}{\sqrt{4 - x}} \, dx = 4 - 2\sqrt{4 - t}

Let me know if you'd like further clarification or step-by-step breakdowns!


Related Questions:

  1. How can substitution simplify integrals involving roots?
  2. What are the standard trigonometric substitutions for integrals?
  3. What is the geometric interpretation of this integral?
  4. How would the result change for 0t1axdx\int_{0}^{t} \frac{1}{\sqrt{a - x}} \, dx?
  5. What are some applications of this type of integral in physics or engineering?

Tip:

When solving integrals involving roots or quadratic expressions, always look for opportunities to apply trigonometric substitutions—they often simplify the problem significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitution

Formulas

\(\int \frac{1}{\sqrt{a - x}} \, dx\)
Trigonometric substitution \(x = a \sin^2 \theta\)

Theorems

Definite Integration
Trigonometric Identities

Suitable Grade Level

Undergraduate Calculus