Math Problem Statement

Evaluate the integral \( \int \sqrt{1 - x^2} \, dx \).

Solution

The given integral is:

1x2dx\int \sqrt{1 - x^2} \, dx

Solution:

This is a standard integral, and the best approach is to use trigonometric substitution.

Steps:

  1. Substitute: Let x=sinθx = \sin\theta, so dx=cosθdθdx = \cos\theta \, d\theta and 1x2=1sin2θ=cosθ\sqrt{1 - x^2} = \sqrt{1 - \sin^2\theta} = \cos\theta.

    Substituting these into the integral: 1x2dx=cosθcosθdθ=cos2θdθ\int \sqrt{1 - x^2} \, dx = \int \cos\theta \cdot \cos\theta \, d\theta = \int \cos^2\theta \, d\theta

  2. Simplify using trigonometric identity: Use the identity: cos2θ=1+cos(2θ)2\cos^2\theta = \frac{1 + \cos(2\theta)}{2}

    The integral becomes: cos2θdθ=1+cos(2θ)2dθ=121dθ+12cos(2θ)dθ\int \cos^2\theta \, d\theta = \int \frac{1 + \cos(2\theta)}{2} \, d\theta = \frac{1}{2} \int 1 \, d\theta + \frac{1}{2} \int \cos(2\theta) \, d\theta

  3. Solve each term:

    • For 1dθ=θ\int 1 \, d\theta = \theta
    • For cos(2θ)dθ=sin(2θ)2\int \cos(2\theta) \, d\theta = \frac{\sin(2\theta)}{2}

    Combine these: cos2θdθ=12θ+14sin(2θ)+C\int \cos^2\theta \, d\theta = \frac{1}{2} \theta + \frac{1}{4} \sin(2\theta) + C

  4. Back-substitute: Recall that x=sinθx = \sin\theta, so θ=arcsin(x)\theta = \arcsin(x) and sin(2θ)=2sinθcosθ=2x1x2\sin(2\theta) = 2\sin\theta\cos\theta = 2x\sqrt{1 - x^2}.

    Substituting back: 1x2dx=12arcsin(x)+142x1x2+C\int \sqrt{1 - x^2} \, dx = \frac{1}{2} \arcsin(x) + \frac{1}{4} \cdot 2x\sqrt{1 - x^2} + C

    Simplify: 1x2dx=12arcsin(x)+x1x22+C\int \sqrt{1 - x^2} \, dx = \frac{1}{2} \arcsin(x) + \frac{x\sqrt{1 - x^2}}{2} + C

Final Answer:

1x2dx=12arcsin(x)+x1x22+C\int \sqrt{1 - x^2} \, dx = \frac{1}{2} \arcsin(x) + \frac{x\sqrt{1 - x^2}}{2} + C

Would you like a detailed explanation of any step or have additional questions?


Here are 5 questions that can deepen your understanding:

  1. What is the purpose of trigonometric substitution in integral calculus?
  2. Why is cos2θ\cos^2\theta rewritten using the identity 1+cos(2θ)2\frac{1 + \cos(2\theta)}{2}?
  3. How does sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin\theta\cos\theta simplify back-substitution?
  4. What would happen if we used different substitution methods (e.g., x=cosθx = \cos\theta)?
  5. How does the constant of integration CC affect definite integrals?

Tip:

Trigonometric substitutions are particularly useful for integrals involving 1x2\sqrt{1 - x^2}, 1+x2\sqrt{1 + x^2}, or x21\sqrt{x^2 - 1}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution

Formulas

\( \cos^2\theta = \frac{1 + \cos(2\theta)}{2} \)
\( \sin(2\theta) = 2\sin\theta\cos\theta \)

Theorems

Trigonometric Substitution
Arcsine Function

Suitable Grade Level

College Level or Advanced High School