Math Problem Statement
solve integrate 1/ (x^2 * sqrt(x^2 + 4))
Solution
To solve the integral
let’s approach this step by step.
Step 1: Simplify and consider substitution
The presence of in the square root suggests a trigonometric substitution. Use , so:
Also, since , then .
Step 2: Substituting into the integral
Substituting all expressions into the integral gives:
= \int \frac{1}{(4 \tan^2\theta)(2 \sec\theta)} (2 \sec^2\theta) \, d\theta.$$ Simplify the terms: $$= \int \frac{\sec\theta}{8 \tan^2\theta} \, d\theta.$$ --- ### Step 3: Simplify and rewrite in terms of basic trigonometric integrals Use the identity $$\tan^2\theta = \sec^2\theta - 1$$ to rewrite the denominator: $$= \frac{1}{8} \int \frac{\sec\theta}{\sec^2\theta - 1} \, d\theta.$$ Rewrite as: $$= \frac{1}{8} \int \frac{1}{\tan^2\theta} \, d\theta.$$ Since $$\frac{1}{\tan^2\theta} = \cot^2\theta$$, the integral becomes: $$\frac{1}{8} \int \cot^2\theta \, d\theta.$$ --- ### Step 4: Integral of $$\cot^2\theta$$ Recall that: $$\cot^2\theta = \csc^2\theta - 1.$$ Thus: $$\int \cot^2\theta \, d\theta = \int (\csc^2\theta - 1) \, d\theta = -\cot\theta - \theta + C.$$ So the integral becomes: $$\frac{1}{8} \left( -\cot\theta - \theta \right) + C.$$ --- ### Step 5: Back-substitute $$\theta$$ in terms of $$x$$ From the substitution $$x = 2 \tan\theta$$, we know: $$\theta = \tan^{-1}\left(\frac{x}{2}\right), \quad \cot\theta = \frac{1}{\tan\theta} = \frac{2}{x}.$$ Substitute these back: $$-\cot\theta = -\frac{2}{x}, \quad -\theta = -\tan^{-1}\left(\frac{x}{2}\right).$$ Thus, the integral is: $$\int \frac{1}{x^2 \sqrt{x^2 + 4}} \, dx = \frac{1}{8} \left( -\frac{2}{x} - \tan^{-1}\left(\frac{x}{2}\right) \right) + C.$$ Simplify: $$\boxed{\int \frac{1}{x^2 \sqrt{x^2 + 4}} \, dx = -\frac{1}{4x} - \frac{1}{8} \tan^{-1}\left(\frac{x}{2}\right) + C.}$$ --- Would you like me to clarify any step or expand on the substitution? ### Related Questions: 1. What are common trigonometric substitutions for similar integrals? 2. How can $$\tan^{-1}(x)$$ derivatives and integrals help in practical problems? 3. Could this integral be solved using hyperbolic substitution instead of trigonometric? 4. How does substitution simplify complex integrals involving square roots? 5. Are there other methods, like numerical integration, to evaluate this integral? **Tip:** Always check if trigonometric substitution or partial fractions fit better for integrals with radicals.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Integration
Trigonometric Substitution
Calculus
Formulas
Trigonometric substitution: x = 2tan(θ)
Identity: tan^2(θ) = sec^2(θ) - 1
Integral of cot^2(θ): ∫cot^2(θ) dθ = -cot(θ) - θ + C
Theorems
Trigonometric substitution theorem for radical expressions
Fundamental theorem of calculus
Suitable Grade Level
Undergraduate Calculus
Related Recommendation
Integral of (x^3 / √(x^2 + 4)) using Substitution x = 2tanθ
Trigonometric Substitution in Integrals: Solving \int \frac{dx}{x \sqrt{1 - x^4}}
Integral of 4 / [x^2 * sqrt(16x^2 - 9)] Using Trigonometric Substitution
Integral of sqrt(x^2 - 4) / x^4 Using Substitution and Trigonometric Methods
Integration by Trigonometric Substitution: √(4 - x^2) / x^2 dx