Math Problem Statement

use de moivres theorem to expand cos^4θ in terms of multiple powers of z based on θ

Solution

To expand cos4θ\cos^4 \theta using De Moivre's theorem, we express powers of cosθ\cos \theta in terms of complex exponentials. First, let's recall De Moivre's theorem:

(cosθ+isinθ)n=cos(nθ)+isin(nθ).\left( \cos \theta + i \sin \theta \right)^n = \cos (n\theta) + i \sin (n\theta).

Now, introduce z=eiθz = e^{i\theta}, where:

z=cosθ+isinθandz1=cosθisinθ.z = \cos \theta + i \sin \theta \quad \text{and} \quad z^{-1} = \cos \theta - i \sin \theta.

From this, we know:

cosθ=z+z12.\cos \theta = \frac{z + z^{-1}}{2}.

Step 1: Express cos4θ\cos^4 \theta in terms of zz

Now let's express cos4θ\cos^4 \theta using this identity:

cos4θ=(z+z12)4.\cos^4 \theta = \left( \frac{z + z^{-1}}{2} \right)^4.

Step 2: Expand the expression

Expand the binomial:

cos4θ=116(z+z1)4.\cos^4 \theta = \frac{1}{16} \left( z + z^{-1} \right)^4.

Using the binomial expansion:

(z+z1)4=z4+4z3z1+6z2z2+4zz3+z4.\left( z + z^{-1} \right)^4 = z^4 + 4z^3z^{-1} + 6z^2z^{-2} + 4z z^{-3} + z^{-4}.

Simplify the powers of zz:

(z+z1)4=z4+4z2+6+4z2+z4.\left( z + z^{-1} \right)^4 = z^4 + 4z^2 + 6 + 4z^{-2} + z^{-4}.

Step 3: Combine terms

Now we substitute this back into the expression for cos4θ\cos^4 \theta:

cos4θ=116(z4+4z2+6+4z2+z4).\cos^4 \theta = \frac{1}{16} \left( z^4 + 4z^2 + 6 + 4z^{-2} + z^{-4} \right).

Final Answer:

So, the expansion of cos4θ\cos^4 \theta in terms of powers of zz is:

cos4θ=116(z4+4z2+6+4z2+z4).\cos^4 \theta = \frac{1}{16} \left( z^4 + 4z^2 + 6 + 4z^{-2} + z^{-4} \right).

Would you like further details or have any questions about this?

Here are 5 related questions:

  1. How can De Moivre's theorem be applied to express sin4θ\sin^4 \theta?
  2. Can you derive the expression for cos2θ\cos^2 \theta using De Moivre's theorem?
  3. How does Euler's formula relate to De Moivre's theorem?
  4. What happens when expanding cos6θ\cos^6 \theta in terms of powers of zz?
  5. How can you use De Moivre's theorem to compute cos(4θ)\cos(4\theta)?

Tip: De Moivre's theorem is especially useful when dealing with powers of trigonometric functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Complex Numbers
Exponential Functions

Formulas

De Moivre's Theorem: (cos θ + i sin θ)^n = cos(nθ) + i sin(nθ)
Euler's Formula: z = e^(iθ)
cos θ = (z + z^(-1)) / 2
Binomial expansion

Theorems

De Moivre's Theorem

Suitable Grade Level

Undergraduate Mathematics or Advanced High School