Math Problem Statement

integrate cos^4 x

Solution

To find the integral of cos4(x)\cos^4(x), we can use a power-reduction identity and some trigonometric identities to simplify the expression.

Step 1: Use the power-reduction formula for cos2(x)\cos^2(x)

We start by rewriting cos4(x)\cos^4(x) as: cos4(x)=(cos2(x))2\cos^4(x) = \left( \cos^2(x) \right)^2 Using the identity for cos2(x)\cos^2(x): cos2(x)=1+cos(2x)2\cos^2(x) = \frac{1 + \cos(2x)}{2} We substitute this into the equation: cos4(x)=(1+cos(2x)2)2\cos^4(x) = \left( \frac{1 + \cos(2x)}{2} \right)^2

Step 2: Expand the square

Now, expand the square: cos4(x)=14(1+2cos(2x)+cos2(2x))\cos^4(x) = \frac{1}{4} \left( 1 + 2\cos(2x) + \cos^2(2x) \right)

Step 3: Apply the power-reduction formula to cos2(2x)\cos^2(2x)

We can apply the power-reduction identity again to cos2(2x)\cos^2(2x): cos2(2x)=1+cos(4x)2\cos^2(2x) = \frac{1 + \cos(4x)}{2} Substitute this back: cos4(x)=14(1+2cos(2x)+1+cos(4x)2)\cos^4(x) = \frac{1}{4} \left( 1 + 2\cos(2x) + \frac{1 + \cos(4x)}{2} \right)

Step 4: Simplify the expression

Simplify the expression: cos4(x)=14(1+2cos(2x)+12+cos(4x)2)\cos^4(x) = \frac{1}{4} \left( 1 + 2\cos(2x) + \frac{1}{2} + \frac{\cos(4x)}{2} \right) cos4(x)=14(32+2cos(2x)+cos(4x)2)\cos^4(x) = \frac{1}{4} \left( \frac{3}{2} + 2\cos(2x) + \frac{\cos(4x)}{2} \right) cos4(x)=38+12cos(2x)+18cos(4x)\cos^4(x) = \frac{3}{8} + \frac{1}{2} \cos(2x) + \frac{1}{8} \cos(4x)

Step 5: Integrate term by term

Now, we can integrate each term: cos4(x)dx=(38+12cos(2x)+18cos(4x))dx\int \cos^4(x) \, dx = \int \left( \frac{3}{8} + \frac{1}{2} \cos(2x) + \frac{1}{8} \cos(4x) \right) dx =38x+14sin(2x)+132sin(4x)+C= \frac{3}{8}x + \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) + C

Final Answer:

cos4(x)dx=38x+14sin(2x)+132sin(4x)+C\int \cos^4(x) \, dx = \frac{3}{8}x + \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) + C

Would you like more details on any specific step, or have any questions?


Here are 5 related questions to further your understanding:

  1. How would you integrate cos6(x)\cos^6(x)?
  2. What is the general process to integrate cosn(x)\cos^n(x) for any nn?
  3. How would you apply a similar approach to integrate sin4(x)\sin^4(x)?
  4. Can you explain how trigonometric power-reduction identities are derived?
  5. How would you solve a definite integral involving cos4(x)\cos^4(x), such as 0πcos4(x)dx\int_0^{\pi} \cos^4(x) \, dx?

Tip: Power-reduction identities simplify the integration of even powers of sine and cosine functions, reducing higher powers into sums of lower powers with manageable integrals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Integration
Power-reduction identity

Formulas

cos^2(x) = (1 + cos(2x)) / 2
cos^2(2x) = (1 + cos(4x)) / 2
∫cos^4(x) dx = (3/8)x + (1/4)sin(2x) + (1/32)sin(4x) + C

Theorems

Power-reduction identity
Trigonometric identities

Suitable Grade Level

College-level Calculus