Math Problem Statement

Use De Moivre's theorem, together with the binomial theorem, to show that: 1. cos(4θ) = cos⁴(θ) - 6 cos²(θ)sin²(θ) + sin⁴(θ) 2. sin(4θ) = 4 cos³(θ)sin(θ) - 4 cos(θ)sin³(θ)

Solution

The image contains a mathematical problem asking to use De Moivre's Theorem together with the Binomial Theorem to derive trigonometric identities.

Let's break it down step by step.

1. De Moivre's Theorem:

De Moivre's Theorem states: (cosθ+isinθ)n=cos(nθ)+isin(nθ)(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) For n=4n = 4, we can expand (cosθ+isinθ)4(\cos \theta + i \sin \theta)^4.

2. Using the Binomial Theorem:

To expand (cosθ+isinθ)4(\cos \theta + i \sin \theta)^4, we use the binomial theorem: (cosθ+isinθ)4=k=04(4k)(cosθ)4k(isinθ)k(\cos \theta + i \sin \theta)^4 = \sum_{k=0}^{4} \binom{4}{k} (\cos \theta)^{4-k} (i \sin \theta)^k This will give us terms involving powers of cosθ\cos \theta, sinθ\sin \theta, and powers of ii. The real part of this expansion will give cos4θ\cos 4\theta and the imaginary part will give sin4θ\sin 4\theta.

3. Deriving the Cosine and Sine Formulas:

(i) Expansion of cos4θ\cos 4\theta:

We focus on the real terms of the expansion: cos4θ=(40)cos4θ+(42)(1)cos2θsin2θ+(44)(1)2sin4θ\cos 4\theta = \binom{4}{0} \cos^4 \theta + \binom{4}{2} (-1) \cos^2 \theta \sin^2 \theta + \binom{4}{4} (-1)^2 \sin^4 \theta Simplifying each term: cos4θ=cos4θ6cos2θsin2θ+sin4θ\cos 4\theta = \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta Thus, the identity for cos4θ\cos 4\theta is: cos4θ=cos4θ6cos2θsin2θ+sin4θ\cos 4\theta = \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta

(ii) Expansion of sin4θ\sin 4\theta:

Now, focus on the imaginary part: sin4θ=(41)4cos3θsinθ+(43)(1)4cosθsin3θ\sin 4\theta = \binom{4}{1} 4 \cos^3 \theta \sin \theta + \binom{4}{3} (-1) 4 \cos \theta \sin^3 \theta Simplifying: sin4θ=4cos3θsinθ4cosθsin3θ\sin 4\theta = 4 \cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta Thus, the identity for sin4θ\sin 4\theta is: sin4θ=4cos3θsinθ4cosθsin3θ\sin 4\theta = 4 \cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta

Final Answer:

Using De Moivre's Theorem and the Binomial Theorem, the required identities are derived: cos4θ=cos4θ6cos2θsin2θ+sin4θ\cos 4\theta = \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta sin4θ=4cos3θsinθ4cosθsin3θ\sin 4\theta = 4 \cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta

Would you like more details or clarifications on any part?

Here are 5 related questions:

  1. How does De Moivre's theorem apply to higher powers of complex numbers?
  2. Can you generalize the formula for cos(nθ)\cos(n\theta) and sin(nθ)\sin(n\theta)?
  3. How can we use the double-angle formulas to derive similar results?
  4. What are the key differences between using De Moivre's theorem and the sum of angles formulas?
  5. How do binomial coefficients play a role in expanding trigonometric identities?

Tip: The binomial theorem is highly useful in expanding complex expressions, especially when combined with De Moivre’s theorem for trigonometric identities.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Complex Numbers

Formulas

De Moivre's Theorem: (cosθ + i sinθ)^n = cos(nθ) + i sin(nθ)
Binomial Expansion: (a + b)^n = Σ C(n, k) * a^(n-k) * b^k

Theorems

De Moivre's Theorem
Binomial Theorem

Suitable Grade Level

Grades 11-12 (Pre-Calculus or Advanced Trigonometry)