Math Problem Statement

question 7 part f

Question 7, part f: Show that Var(Y | X = x) = (x^2 - 2x + 1) / 12, where 0 < x < 1.

Solution

To solve part (f) of question 7, we need to show that the conditional variance Var(YX=x)\text{Var}(Y \mid X = x) is given by

Var(YX=x)=x22x+112,for 0<x<1.\text{Var}(Y \mid X = x) = \frac{x^2 - 2x + 1}{12}, \quad \text{for } 0 < x < 1.

Step-by-Step Solution:

1. Recall the formula for conditional variance:

[ \text{Var}(Y \mid X = x) = \mathbb{E}[Y^2 \mid X = x] - (\mathbb{E}[Y \mid X = x])^2. ]

2. Determine the conditional PDF fYX(yx)f_{Y|X}(y \mid x):

The joint PDF is: fX,Y(x,y)=c,for 0<x<y<1.f_{X,Y}(x, y) = c, \quad \text{for } 0 < x < y < 1. The marginal PDF of XX is required to normalize fX,Yf_{X,Y}. From part (c), the marginal PDF of XX is: fX(x)=x1cdy=c(1x).f_X(x) = \int_x^1 c \, dy = c(1 - x). Thus, the conditional PDF is: fYX(yx)=fX,Y(x,y)fX(x)=cc(1x)=11x,for x<y<1.f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x, y)}{f_X(x)} = \frac{c}{c(1 - x)} = \frac{1}{1 - x}, \quad \text{for } x < y < 1.

3. Compute E[YX=x]\mathbb{E}[Y \mid X = x]:

The expectation is: E[YX=x]=x1yfYX(yx)dy=x1y11xdy.\mathbb{E}[Y \mid X = x] = \int_x^1 y f_{Y|X}(y \mid x) \, dy = \int_x^1 y \frac{1}{1 - x} \, dy. Factoring out 1/(1x)1/(1-x): E[YX=x]=11xx1ydy.\mathbb{E}[Y \mid X = x] = \frac{1}{1 - x} \int_x^1 y \, dy. The integral of yy is: x1ydy=[y22]x1=122x22=1x22.\int_x^1 y \, dy = \left[\frac{y^2}{2}\right]_x^1 = \frac{1^2}{2} - \frac{x^2}{2} = \frac{1 - x^2}{2}. Thus: E[YX=x]=11x1x22=1+x2.\mathbb{E}[Y \mid X = x] = \frac{1}{1 - x} \cdot \frac{1 - x^2}{2} = \frac{1 + x}{2}.

4. Compute E[Y2X=x]\mathbb{E}[Y^2 \mid X = x]:

The expectation is: E[Y2X=x]=x1y2fYX(yx)dy=x1y211xdy.\mathbb{E}[Y^2 \mid X = x] = \int_x^1 y^2 f_{Y|X}(y \mid x) \, dy = \int_x^1 y^2 \frac{1}{1 - x} \, dy. Factoring out 1/(1x)1/(1-x): E[Y2X=x]=11xx1y2dy.\mathbb{E}[Y^2 \mid X = x] = \frac{1}{1 - x} \int_x^1 y^2 \, dy. The integral of y2y^2 is: x1y2dy=[y33]x1=133x33=1x33.\int_x^1 y^2 \, dy = \left[\frac{y^3}{3}\right]_x^1 = \frac{1^3}{3} - \frac{x^3}{3} = \frac{1 - x^3}{3}. Thus: E[Y2X=x]=11x1x33=1+x+x23.\mathbb{E}[Y^2 \mid X = x] = \frac{1}{1 - x} \cdot \frac{1 - x^3}{3} = \frac{1 + x + x^2}{3}.

5. Substitute into the variance formula:

[ \text{Var}(Y \mid X = x) = \mathbb{E}[Y^2 \mid X = x] - (\mathbb{E}[Y \mid X = x])^2. ] Substitute E[YX=x]=1+x2\mathbb{E}[Y \mid X = x] = \frac{1 + x}{2} and E[Y2X=x]=1+x+x23\mathbb{E}[Y^2 \mid X = x] = \frac{1 + x + x^2}{3}: Var(YX=x)=1+x+x23(1+x2)2.\text{Var}(Y \mid X = x) = \frac{1 + x + x^2}{3} - \left(\frac{1 + x}{2}\right)^2. Simplify (1+x2)2\left(\frac{1 + x}{2}\right)^2: (1+x2)2=(1+x)24=1+2x+x24.\left(\frac{1 + x}{2}\right)^2 = \frac{(1 + x)^2}{4} = \frac{1 + 2x + x^2}{4}. Thus: Var(YX=x)=1+x+x231+2x+x24.\text{Var}(Y \mid X = x) = \frac{1 + x + x^2}{3} - \frac{1 + 2x + x^2}{4}. Find a common denominator (12): Var(YX=x)=4(1+x+x2)123(1+2x+x2)12.\text{Var}(Y \mid X = x) = \frac{4(1 + x + x^2)}{12} - \frac{3(1 + 2x + x^2)}{12}. Simplify: Var(YX=x)=4+4x+4x236x3x212=x22x+112.\text{Var}(Y \mid X = x) = \frac{4 + 4x + 4x^2 - 3 - 6x - 3x^2}{12} = \frac{x^2 - 2x + 1}{12}.

Final Answer:

Var(YX=x)=x22x+112.\text{Var}(Y \mid X = x) = \frac{x^2 - 2x + 1}{12}.

Would you like detailed explanations for any specific part of this solution?


Related Questions:

  1. How is conditional variance used in statistics, and why is it significant in this problem?
  2. What is the geometric interpretation of the conditional variance?
  3. Can you explain the derivation of the marginal distribution fX(x)f_X(x) in more detail?
  4. How does independence between XX and YY relate to the variance in this problem?
  5. What are practical examples where conditional variance calculations are important?

Tip:

When working with conditional distributions, always ensure that the marginal distributions are properly normalized to maintain consistency.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Conditional Probability
Variance
Probability Density Functions
Marginal and Conditional Distributions

Formulas

Var(Y | X = x) = E[Y^2 | X = x] - (E[Y | X = x])^2
f_Y|X(y | x) = f_{X,Y}(x, y) / f_X(x)

Theorems

Conditional Expectation and Variance

Suitable Grade Level

Undergraduate Statistics/Probability