Math Problem Statement

If z = (2 - i) / (1 + i), find (a) Re(z^2) + Im(z^2) (b) Re(z + 1/z) + Im(z + 1/z).

Solution

To solve this, let’s proceed by breaking down the expression for zz and finding each part step-by-step.

Given: z=2i1+iz = \frac{2 - i}{1 + i}

  1. Simplify zz:

    To simplify zz, multiply both the numerator and the denominator by the complex conjugate of the denominator, 1i1 - i: z=(2i)(1i)(1+i)(1i)z = \frac{(2 - i)(1 - i)}{(1 + i)(1 - i)}

    Calculate the denominator: (1+i)(1i)=12i2=1(1)=2(1 + i)(1 - i) = 1^2 - i^2 = 1 - (-1) = 2

    Calculate the numerator: (2i)(1i)=212ii1+ii=22ii+i2=23i1=13i(2 - i)(1 - i) = 2 \cdot 1 - 2 \cdot i - i \cdot 1 + i \cdot i = 2 - 2i - i + i^2 = 2 - 3i - 1 = 1 - 3i

    So, z=13i2=1232iz = \frac{1 - 3i}{2} = \frac{1}{2} - \frac{3}{2}i

    Thus, the real part of zz is Re(z)=12\text{Re}(z) = \frac{1}{2} and the imaginary part is Im(z)=32\text{Im}(z) = -\frac{3}{2}.

  2. Find z2z^2:

    Calculate z2z^2 by squaring zz: z2=(1232i)2z^2 = \left( \frac{1}{2} - \frac{3}{2}i \right)^2

    Expand this expression: z2=1421232i+(32i)2z^2 = \frac{1}{4} - 2 \cdot \frac{1}{2} \cdot \frac{3}{2} i + \left(-\frac{3}{2} i\right)^2 =1432i+94(1)=1432i94= \frac{1}{4} - \frac{3}{2}i + \frac{9}{4}(-1) = \frac{1}{4} - \frac{3}{2}i - \frac{9}{4} =8432i=232i= -\frac{8}{4} - \frac{3}{2}i = -2 - \frac{3}{2}i

    So, Re(z2)=2\text{Re}(z^2) = -2 and Im(z2)=32\text{Im}(z^2) = -\frac{3}{2}.

    Therefore, for part (a): Re(z2)+Im(z2)=232=72\text{Re}(z^2) + \text{Im}(z^2) = -2 - \frac{3}{2} = -\frac{7}{2}

  3. Calculate z+1zz + \frac{1}{z}:

    First, find 1z\frac{1}{z}.

    1z=11232i\frac{1}{z} = \frac{1}{\frac{1}{2} - \frac{3}{2}i}

    Multiply the numerator and the denominator by the complex conjugate of the denominator: 1z=12+32i(12)2+(32)2\frac{1}{z} = \frac{\frac{1}{2} + \frac{3}{2}i}{\left( \frac{1}{2} \right)^2 + \left( \frac{3}{2} \right)^2} =12+32i14+94=12+32i104=1+3i5=15+35i= \frac{\frac{1}{2} + \frac{3}{2}i}{\frac{1}{4} + \frac{9}{4}} = \frac{\frac{1}{2} + \frac{3}{2}i}{\frac{10}{4}} = \frac{1 + 3i}{5} = \frac{1}{5} + \frac{3}{5}i

    Now, compute z+1zz + \frac{1}{z}: z+1z=(1232i)+(15+35i)z + \frac{1}{z} = \left( \frac{1}{2} - \frac{3}{2}i \right) + \left( \frac{1}{5} + \frac{3}{5}i \right) =12+1532i+35i= \frac{1}{2} + \frac{1}{5} - \frac{3}{2}i + \frac{3}{5}i Combine real and imaginary parts: =(12+15)+(32+35)i= \left( \frac{1}{2} + \frac{1}{5} \right) + \left( -\frac{3}{2} + \frac{3}{5} \right)i =5+210+15+610i=710910i= \frac{5 + 2}{10} + \frac{-15 + 6}{10}i = \frac{7}{10} - \frac{9}{10}i

    Thus, Re(z+1z)=710\text{Re}\left( z + \frac{1}{z} \right) = \frac{7}{10} and Im(z+1z)=910\text{Im}\left( z + \frac{1}{z} \right) = -\frac{9}{10}.

    So, for part (b): Re(z+1z)+Im(z+1z)=710910=210=15\text{Re}\left( z + \frac{1}{z} \right) + \text{Im}\left( z + \frac{1}{z} \right) = \frac{7}{10} - \frac{9}{10} = -\frac{2}{10} = -\frac{1}{5}

Summary of Results:

  • (a) Re(z2)+Im(z2)=72\text{Re}(z^2) + \text{Im}(z^2) = -\frac{7}{2}
  • (b) Re(z+1z)+Im(z+1z)=15\text{Re}\left( z + \frac{1}{z} \right) + \text{Im}\left( z + \frac{1}{z} \right) = -\frac{1}{5}

Would you like more details on any specific part of the solution, or have any questions?


Further Exploration Questions:

  1. How do we find the modulus and argument of a complex number?
  2. What is the significance of the real and imaginary parts in complex arithmetic?
  3. How does multiplication by the conjugate help simplify complex fractions?
  4. What are some applications of complex numbers in physics and engineering?
  5. How can complex numbers be represented graphically in the complex plane?

Tip:

When simplifying complex numbers, always try to multiply by the conjugate of the denominator to eliminate any imaginary terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Complex Conjugates
Real and Imaginary Parts

Formulas

z = (a + bi) / (c + di) can be simplified by multiplying numerator and denominator by the conjugate of the denominator
Re(z) and Im(z) represent the real and imaginary parts of a complex number z
If z = a + bi, then z^2 = (a + bi)^2

Theorems

Complex Conjugate Multiplication

Suitable Grade Level

Grades 11-12