Math Problem Statement

If z = 1 - 2i, express z + 1/z in the form of a + bi.

Solution

To solve the problem, we need to express z+1zz + \frac{1}{z} in the form a+bia + bi, where z=12iz = 1 - 2i.


Step-by-Step Solution

  1. Given:
    z=12iz = 1 - 2i.

  2. Find 1z\frac{1}{z}: To find the reciprocal of zz, we multiply both numerator and denominator by the conjugate of zz.
    The conjugate of z=12iz = 1 - 2i is 1+2i1 + 2i.

    1z=112i1+2i1+2i\frac{1}{z} = \frac{1}{1 - 2i} \cdot \frac{1 + 2i}{1 + 2i}

    Simplify the denominator using the formula (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2:
    (12i)(1+2i)=12(2i)2=14(1)=1+4=5(1 - 2i)(1 + 2i) = 1^2 - (2i)^2 = 1 - 4(-1) = 1 + 4 = 5

    Therefore:
    1z=1+2i5=15+25i\frac{1}{z} = \frac{1 + 2i}{5} = \frac{1}{5} + \frac{2}{5}i

  3. Add z+1zz + \frac{1}{z}:
    Now add z=12iz = 1 - 2i and 1z=15+25i\frac{1}{z} = \frac{1}{5} + \frac{2}{5}i:

    z+1z=(12i)+(15+25i)z + \frac{1}{z} = (1 - 2i) + \left( \frac{1}{5} + \frac{2}{5}i \right)

    Combine like terms (real and imaginary parts):

    • Real part: 1+15=55+15=651 + \frac{1}{5} = \frac{5}{5} + \frac{1}{5} = \frac{6}{5}
    • Imaginary part: 2i+25i=(105+25)i=85i-2i + \frac{2}{5}i = \left( -\frac{10}{5} + \frac{2}{5} \right)i = -\frac{8}{5}i

    Thus:
    z+1z=6585iz + \frac{1}{z} = \frac{6}{5} - \frac{8}{5}i

  4. Final Answer:
    The expression z+1zz + \frac{1}{z} in the form a+bia + bi is:

    6585i\boxed{\frac{6}{5} - \frac{8}{5}i}


Do you want me to clarify any part of the solution or show additional details? Let me know!


Related Questions:

  1. How do you find the conjugate of a complex number?
  2. What is the geometric representation of z+1zz + \frac{1}{z} on the complex plane?
  3. How do you multiply complex numbers in the form a+bia + bi?
  4. How do you compute the modulus of a complex number?
  5. Can you explain why multiplying by the conjugate helps simplify 1z\frac{1}{z}?

Tip: Always simplify complex expressions by separating real and imaginary parts clearly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Conjugates
Reciprocals
Algebraic Simplification

Formulas

Reciprocal of z: \frac{1}{z} = \frac{z_{conjugate}}{|z|^2}
Multiplication of Conjugates: (a - b)(a + b) = a^2 - b^2

Theorems

Properties of Complex Numbers
Conjugate Multiplication Simplification

Suitable Grade Level

Grades 10-12