Math Problem Statement
Sasa had some 20-cent and 50-cent coins. Let x be the total number of coins. Then, 7/8 x were 20-cent coins, and the rest, 1 - 7/8 = 1/8 x, were 50-cent coins. After Sasa spent $72.50 worth of 50-cent coins, which is equivalent to 72.50 / 0.50 = 145 50-cent coins, and 5/7 of the 20-cent coins, she had 2/7 x coins left. Find the total amount of money Sasa left.
Solution
We are given the following information about Sasa's coins:
- Let be the total number of coins.
- are 20-cent coins.
- are 50-cent coins.
- After spending 145 50-cent coins and of the 20-cent coins, she had coins left.
We are tasked with finding the total amount of money Sasa has left.
Step 1: Calculate the number of 50-cent coins Sasa initially had.
The total number of 50-cent coins is . After spending 145 of these coins, the number of remaining 50-cent coins is:
Step 2: Calculate the number of 20-cent coins Sasa initially had.
The total number of 20-cent coins is . After spending of these, the number of remaining 20-cent coins is:
Step 3: Set up the equation for the total number of remaining coins.
After spending some of the coins, Sasa is left with coins. This includes the remaining 50-cent and 20-cent coins. Therefore, the equation is:
Step 4: Solve the equation.
First, express as , so that all terms have a denominator of 8: Combine the terms on the left-hand side: Now, subtract from both sides: To combine these terms, we need a common denominator. The least common denominator of 8 and 7 is 56. Rewriting the fractions: Thus, the equation becomes: Solve for :
Step 5: Calculate the total amount of money Sasa has left.
Now that we know , we can find how many 50-cent and 20-cent coins Sasa has left.
-
The number of remaining 50-cent coins is: The value of the remaining 50-cent coins is:
-
The number of remaining 20-cent coins is: The value of the remaining 20-cent coins is:
Thus, the total amount of money Sasa has left is:
Final Answer:
Sasa has $110.20 left.
Do you need further details or have any questions?
Related Questions:
- What would be the result if Sasa had spent half of her 50-cent coins instead of 145?
- If Sasa had 10 more 20-cent coins initially, what would her remaining total be?
- How would the result change if Sasa spent $90 worth of 50-cent coins?
- What if Sasa had only coins left instead of ?
- How can the same problem be solved using a different method, such as substitution?
Tip:
Always check your work by verifying the total number of remaining coins matches what's expected.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Linear Equations
Fractions
Formulas
Total coins: x
20-cent coins: (7/8)x
50-cent coins: (1/8)x
Remaining coins: (2/7)x
Theorems
-
Suitable Grade Level
Grades 8-10
Related Recommendation
Solve Linear Equations with Fractions: Coin Problem with 20-cent and 50-cent Coins
Solve Word Problem Involving 20-cent and 50-cent Coins with Linear Equations
Solve Coin Problem with Fractions and Linear Equations
Find the Total Money Left After Spending Coins with Fractions
Solve Coin Problem Involving Proportions and Currency Calculations