Math Problem Statement

If A=[(1,0,3),(-2,4,5),(2,0,1)] then find A^2−2A+5I.

Solution

Given the matrix A=(103245201)A = \begin{pmatrix} 1 & 0 & 3 \\ -2 & 4 & 5 \\ 2 & 0 & 1 \end{pmatrix}, we are asked to find the expression A22A+5IA^2 - 2A + 5I, where II is the identity matrix.

Step 1: Calculate A2A^2

To calculate A2A^2, we need to multiply the matrix AA by itself:

A2=A×A=(103245201)×(103245201)A^2 = A \times A = \begin{pmatrix} 1 & 0 & 3 \\ -2 & 4 & 5 \\ 2 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 3 \\ -2 & 4 & 5 \\ 2 & 0 & 1 \end{pmatrix}

Perform the matrix multiplication:

(-2)(1) + (4)(-2) + (5)(2) & (-2)(0) + (4)(4) + (5)(0) & (-2)(3) + (4)(5) + (5)(1) \\ (2)(1) + (0)(-2) + (1)(2) & (2)(0) + (0)(4) + (1)(0) & (2)(3) + (0)(5) + (1)(1) \end{pmatrix}$$ Simplifying each element: $$A^2 = \begin{pmatrix} 1 + 0 + 6 & 0 + 0 + 0 & 3 + 0 + 3 \\ -2 - 8 + 10 & 0 + 16 + 0 & -6 + 20 + 5 \\ 2 + 0 + 2 & 0 + 0 + 0 & 6 + 0 + 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 & 6 \\ 0 & 16 & 19 \\ 4 & 0 & 7 \end{pmatrix}$$ ### Step 2: Calculate $$-2A$$ Next, calculate $$-2A$$: $$-2A = -2 \times \begin{pmatrix} 1 & 0 & 3 \\ -2 & 4 & 5 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 0 & -6 \\ 4 & -8 & -10 \\ -4 & 0 & -2 \end{pmatrix}$$ ### Step 3: Calculate $$5I$$ The identity matrix $$I$$ for a 3x3 matrix is: $$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ So, $$5I$$ is: $$5I = 5 \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$ ### Step 4: Combine the results Now, combine the results to get $$A^2 - 2A + 5I$$: $$A^2 - 2A + 5I = \begin{pmatrix} 7 & 0 & 6 \\ 0 & 16 & 19 \\ 4 & 0 & 7 \end{pmatrix} - \begin{pmatrix} -2 & 0 & -6 \\ 4 & -8 & -10 \\ -4 & 0 & -2 \end{pmatrix} + \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$ First, add $$A^2$$ and $$-2A$$: $$\begin{pmatrix} 7 & 0 & 6 \\ 0 & 16 & 19 \\ 4 & 0 & 7 \end{pmatrix} + \begin{pmatrix} -2 & 0 & -6 \\ 4 & -8 & -10 \\ -4 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 0 \\ 4 & 8 & 9 \\ 0 & 0 & 5 \end{pmatrix}$$ Now add $$5I$$: $$\begin{pmatrix} 5 & 0 & 0 \\ 4 & 8 & 9 \\ 0 & 0 & 5 \end{pmatrix} + \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 0 \\ 4 & 13 & 9 \\ 0 & 0 & 10 \end{pmatrix}$$ ### Final Answer $$A^2 - 2A + 5I = \begin{pmatrix} 10 & 0 & 0 \\ 4 & 13 & 9 \\ 0 & 0 & 10 \end{pmatrix}$$ Would you like any details or have any questions? Here are five related questions to expand on this topic: 1. How do you calculate the determinant of the resulting matrix $$A^2 - 2A + 5I$$? 2. What is the trace of the matrix $$A^2 - 2A + 5I$$? 3. How can you find the eigenvalues of the matrix $$A^2 - 2A + 5I$$? 4. What is the inverse of the matrix $$A^2 - 2A + 5I$$ if it exists? 5. Can the result $$A^2 - 2A + 5I$$ be used to determine if $$A$$ is diagonalizable? **Tip:** Always double-check matrix multiplication by computing the individual elements separately to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Matrix Multiplication
Identity Matrix

Formulas

-

Theorems

-

Suitable Grade Level

University Level