Math Problem Statement

Tunjukkan bahwa A^2 - 2A - 5I = 0 untuk matriks A = [[-1, 2], [1, 3]].

Solution

The problem asks to show that for the given matrix AA, the equation A22A5I=0A^2 - 2A - 5I = 0 holds true. The matrix AA is:

A=(1213)A = \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}

Where II is the identity matrix, and we are tasked with proving the equation involving matrix powers and operations.

Steps:

  1. Calculate A2A^2: A2=A×A=(1213)×(1213)A^2 = A \times A = \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}

    Perform the matrix multiplication.

  2. Multiply matrix AA by 2: 2A=2×(1213)=(2426)2A = 2 \times \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 2 & 6 \end{pmatrix}

  3. Multiply identity matrix II by 5: 5I=5×(1001)=(5005)5I = 5 \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}

  4. Substitute these values into the equation A22A5IA^2 - 2A - 5I and verify if the result is the zero matrix:

A22A5I=?A^2 - 2A - 5I = ?

Let's calculate these steps in detail:

1. Calculating A2A^2:

= \begin{pmatrix} (-1)(-1) + (2)(1) & (-1)(2) + (2)(3) \\ (1)(-1) + (3)(1) & (1)(2) + (3)(3) \end{pmatrix} = \begin{pmatrix} 1 + 2 & -2 + 6 \\ -1 + 3 & 2 + 9 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 2 & 11 \end{pmatrix}$$ #### 2. Now calculate $$A^2 - 2A - 5I$$: $$A^2 - 2A = \begin{pmatrix} 3 & 4 \\ 2 & 11 \end{pmatrix} - \begin{pmatrix} -2 & 4 \\ 2 & 6 \end{pmatrix} = \begin{pmatrix} 3 - (-2) & 4 - 4 \\ 2 - 2 & 11 - 6 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$$ $$A^2 - 2A - 5I = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} - \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$ Thus, we have proven that $$A^2 - 2A - 5I = 0$$. Would you like further clarification on any step? Here are some related questions: 1. What is the general process for matrix multiplication? 2. How do we prove similar equations with larger matrices? 3. What is the significance of the identity matrix in such problems? 4. How would we find the inverse of matrix $$A$$? 5. Can this equation be generalized for other $$n \times n$$ matrices? **Tip:** Matrix multiplication is not commutative, so the order of multiplication matters.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Operations
Matrix Multiplication
Identity Matrix

Formulas

A^2 - 2A - 5I = 0
Matrix multiplication
Matrix subtraction
Scalar multiplication of matrices

Theorems

Matrix multiplication properties
Identity matrix properties

Suitable Grade Level

Undergraduate level (or advanced high school level)