Math Problem Statement
If A=[(1,0,3),(-2,4,5),(2,0,1)] then find A^2−2A+5I.
Solution
Given the matrix , we need to find , where is the identity matrix.
Let's break it down step by step:
1. Compute
First, we need to multiply by itself:
(1 \times 1) + (0 \times -2) + (3 \times 2) & (1 \times 0) + (0 \times 4) + (3 \times 0) & (1 \times 3) + (0 \times 5) + (3 \times 1) \\ (-2 \times 1) + (4 \times -2) + (5 \times 2) & (-2 \times 0) + (4 \times 4) + (5 \times 0) & (-2 \times 3) + (4 \times 5) + (5 \times 1) \\ (2 \times 1) + (0 \times -2) + (1 \times 2) & (2 \times 0) + (0 \times 4) + (1 \times 0) & (2 \times 3) + (0 \times 5) + (1 \times 1) \end{pmatrix}$$ $$= \begin{pmatrix} 1 + 0 + 6 & 0 + 0 + 0 & 3 + 0 + 3 \\ -2 - 8 + 10 & 0 + 16 + 0 & -6 + 20 + 5 \\ 2 + 0 + 2 & 0 + 0 + 0 & 6 + 0 + 1 \end{pmatrix}$$ $$= \begin{pmatrix} 7 & 0 & 6 \\ 0 & 16 & 19 \\ 4 & 0 & 7 \end{pmatrix}$$ ### 2. Compute $$2A$$ Now, multiply $$A$$ by 2: $$2A = 2 \times \begin{pmatrix} 1 & 0 & 3 \\ -2 & 4 & 5 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 6 \\ -4 & 8 & 10 \\ 4 & 0 & 2 \end{pmatrix}$$ ### 3. Compute $$5I$$ Here, $$I$$ is the identity matrix: $$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ Now multiply it by 5: $$5I = 5 \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$ ### 4. Compute $$A^2 - 2A + 5I$$ Finally, subtract $$2A$$ from $$A^2$$ and add $$5I$$: $$A^2 - 2A + 5I = \begin{pmatrix} 7 & 0 & 6 \\ 0 & 16 & 19 \\ 4 & 0 & 7 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 6 \\ -4 & 8 & 10 \\ 4 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$ $$= \begin{pmatrix} (7 - 2 + 5) & (0 - 0 + 0) & (6 - 6 + 0) \\ (0 + 4 + 0) & (16 - 8 + 5) & (19 - 10 + 0) \\ (4 - 4 + 0) & (0 - 0 + 0) & (7 - 2 + 5) \end{pmatrix}$$ $$= \begin{pmatrix} 10 & 0 & 0 \\ 4 & 13 & 9 \\ 0 & 0 & 10 \end{pmatrix}$$ Thus, $$A^2 - 2A + 5I = \begin{pmatrix} 10 & 0 & 0 \\ 4 & 13 & 9 \\ 0 & 0 & 10 \end{pmatrix}$$. Would you like further details or have any questions about this solution? ### Related Questions: 1. How can you verify that the calculation of $$A^2$$ is correct? 2. What would change if the scalar multiplication was by another number instead of 2 in $$2A$$? 3. How is the identity matrix $$I$$ important in linear algebra? 4. How would the result change if the matrix $$A$$ had different dimensions? 5. What are the properties of matrix multiplication that apply to this problem? ### Tip: Always double-check matrix multiplications by verifying each element calculation to avoid small errors that could lead to incorrect results.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Matrix Algebra
Matrix Multiplication
Identity Matrix
Formulas
Matrix multiplication formula
Theorems
Properties of matrices in algebra
Suitable Grade Level
Undergraduate