Math Problem Statement

If A=[(1,0,3),(-2,4,5),(2,0,1)] then find A^2−2A+5I.

Solution

Given the matrix A=(103245201)A = \begin{pmatrix} 1 & 0 & 3 \\ -2 & 4 & 5 \\ 2 & 0 & 1 \end{pmatrix}, we need to find A22A+5IA^2 - 2A + 5I, where II is the identity matrix.

Let's break it down step by step:

1. Compute A2A^2

First, we need to multiply AA by itself:

A2=A×A=(103245201)×(103245201)A^2 = A \times A = \begin{pmatrix} 1 & 0 & 3 \\ -2 & 4 & 5 \\ 2 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 3 \\ -2 & 4 & 5 \\ 2 & 0 & 1 \end{pmatrix}

(1 \times 1) + (0 \times -2) + (3 \times 2) & (1 \times 0) + (0 \times 4) + (3 \times 0) & (1 \times 3) + (0 \times 5) + (3 \times 1) \\ (-2 \times 1) + (4 \times -2) + (5 \times 2) & (-2 \times 0) + (4 \times 4) + (5 \times 0) & (-2 \times 3) + (4 \times 5) + (5 \times 1) \\ (2 \times 1) + (0 \times -2) + (1 \times 2) & (2 \times 0) + (0 \times 4) + (1 \times 0) & (2 \times 3) + (0 \times 5) + (1 \times 1) \end{pmatrix}$$ $$= \begin{pmatrix} 1 + 0 + 6 & 0 + 0 + 0 & 3 + 0 + 3 \\ -2 - 8 + 10 & 0 + 16 + 0 & -6 + 20 + 5 \\ 2 + 0 + 2 & 0 + 0 + 0 & 6 + 0 + 1 \end{pmatrix}$$ $$= \begin{pmatrix} 7 & 0 & 6 \\ 0 & 16 & 19 \\ 4 & 0 & 7 \end{pmatrix}$$ ### 2. Compute $$2A$$ Now, multiply $$A$$ by 2: $$2A = 2 \times \begin{pmatrix} 1 & 0 & 3 \\ -2 & 4 & 5 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 6 \\ -4 & 8 & 10 \\ 4 & 0 & 2 \end{pmatrix}$$ ### 3. Compute $$5I$$ Here, $$I$$ is the identity matrix: $$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ Now multiply it by 5: $$5I = 5 \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$ ### 4. Compute $$A^2 - 2A + 5I$$ Finally, subtract $$2A$$ from $$A^2$$ and add $$5I$$: $$A^2 - 2A + 5I = \begin{pmatrix} 7 & 0 & 6 \\ 0 & 16 & 19 \\ 4 & 0 & 7 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 6 \\ -4 & 8 & 10 \\ 4 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$ $$= \begin{pmatrix} (7 - 2 + 5) & (0 - 0 + 0) & (6 - 6 + 0) \\ (0 + 4 + 0) & (16 - 8 + 5) & (19 - 10 + 0) \\ (4 - 4 + 0) & (0 - 0 + 0) & (7 - 2 + 5) \end{pmatrix}$$ $$= \begin{pmatrix} 10 & 0 & 0 \\ 4 & 13 & 9 \\ 0 & 0 & 10 \end{pmatrix}$$ Thus, $$A^2 - 2A + 5I = \begin{pmatrix} 10 & 0 & 0 \\ 4 & 13 & 9 \\ 0 & 0 & 10 \end{pmatrix}$$. Would you like further details or have any questions about this solution? ### Related Questions: 1. How can you verify that the calculation of $$A^2$$ is correct? 2. What would change if the scalar multiplication was by another number instead of 2 in $$2A$$? 3. How is the identity matrix $$I$$ important in linear algebra? 4. How would the result change if the matrix $$A$$ had different dimensions? 5. What are the properties of matrix multiplication that apply to this problem? ### Tip: Always double-check matrix multiplications by verifying each element calculation to avoid small errors that could lead to incorrect results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Matrix Multiplication
Identity Matrix

Formulas

Matrix multiplication formula

Theorems

Properties of matrices in algebra

Suitable Grade Level

Undergraduate