Math Problem Statement

Pilih salah satu jawaban dengan benar untuk soal-soal matematika, termasuk bilangan berpangkat, bentuk sederhana akar, dan operasi pembagian pecahan.

Solution

Let's go through the questions from the image:

1. Bilangan berpangkat untuk 0.0001 adalah ....

This is asking for the exponential form of 0.0001. 0.0001=1040.0001 = 10^{-4} Answer: b. 10410^{-4}

2. Nilai yang memenuhi (2)3(22)12×(3)3 adalah ....\text{yang memenuhi } \frac{(-2)^3 \cdot (2^2)^{-1}}{-2 \times (3)^{-3}} \text{ adalah ....}

We need to simplify the expression step by step.

  • Numerator: (2)3=8(-2)^3 = -8 and (22)1=14(2^2)^{-1} = \frac{1}{4} Thus, numerator = 84=2\frac{-8}{4} = -2.

  • Denominator: 2×(3)3=2×127=227-2 \times (3)^{-3} = -2 \times \frac{1}{27} = -\frac{2}{27}.

Thus the full expression becomes: 2227=27\frac{-2}{-\frac{2}{27}} = 27 Answer: a. 2727

3. Nilai dari (23)2÷(315)2 adalah ....\left( \frac{2}{3} \right)^2 \div \left( -\frac{3}{15} \right)^2 \text{ adalah ....}

  • (23)2=49\left( \frac{2}{3} \right)^2 = \frac{4}{9}
  • (315)2=(15)2=125\left( -\frac{3}{15} \right)^2 = \left( -\frac{1}{5} \right)^2 = \frac{1}{25}

Now, the division: 49÷125=49×251=1009\frac{4}{9} \div \frac{1}{25} = \frac{4}{9} \times \frac{25}{1} = \frac{100}{9} Answer: b. 1009\frac{100}{9}

4. Nilai dari (2)3×23÷23 adalah ....(-2)^3 \times 2^3 \div \frac{2}{3} \text{ adalah ....}

  • (2)3=8(-2)^3 = -8
  • 23=82^3 = 8

So, (8)×8=64(-8) \times 8 = -64 64÷23=64×32=96-64 \div \frac{2}{3} = -64 \times \frac{3}{2} = -96 Answer: None of the provided options seem to match.

5. Bentuk sederhana dari 2+5012 adalah ....\sqrt{2} + \sqrt{50} - \sqrt{12} \text{ adalah ....}

Simplify each term: 50=25×2=52,12=4×3=23\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}, \quad \sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3} So, the expression becomes: 2+5223=6223\sqrt{2} + 5\sqrt{2} - 2\sqrt{3} = 6\sqrt{2} - 2\sqrt{3} None of the provided options exactly match this form. Therefore, there might be an error in the options.

Do you want details for any specific question or need further clarification?

5 Related Questions:

  1. How do you simplify exponents with negative bases?
  2. What are the rules for dividing fractions?
  3. How do you simplify radical expressions?
  4. Can you show another example of converting a decimal to an exponent?
  5. How do you handle negative exponents in equations?

Tip:

Always break down complex expressions into smaller steps and deal with powers, roots, and fractions separately before combining them back together!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Fraction division
Square roots
Simplification of expressions

Formulas

a^n = a × a × ... × a (n times)
Square root simplification: √a × b = √a × √b
Division of fractions: (a/b) ÷ (c/d) = (a/b) × (d/c)

Theorems

Laws of exponents
Properties of square roots
Multiplication and division of fractions

Suitable Grade Level

Grade 8-10