Math Problem Statement

Find the average value of ​f(x)equalsnegative cosine x over the interval left bracket negative StartFraction pi Over 4 EndFraction comma StartFraction pi Over 4 EndFraction right bracket . Draw a graph of the function and indicate the average value. Question content area bottom Part 1 The average value is enter your response here. ​(Type an exact​ answer, using pi as​ needed.)

Solution

To find the average value of f(x)=cos(x)f(x) = -\cos(x) over the interval [π4,π4]\left[ -\frac{\pi}{4}, \frac{\pi}{4} \right], we use the formula for the average value of a function:

Average Value=1baabf(x)dx\text{Average Value} = \frac{1}{b-a} \int_a^b f(x) \, dx

Step 1: Set up the integral

Here, a=π4a = -\frac{\pi}{4}, b=π4b = \frac{\pi}{4}, and f(x)=cos(x)f(x) = -\cos(x). The formula becomes:

Average Value=1π4(π4)π4π4cos(x)dx\text{Average Value} = \frac{1}{\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} -\cos(x) \, dx

Simplify bab - a:

ba=π4(π4)=π2b - a = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}

Thus, the formula becomes:

Average Value=1π2π4π4cos(x)dx\text{Average Value} = \frac{1}{\frac{\pi}{2}} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} -\cos(x) \, dx

Step 2: Solve the integral

The integral of cos(x)-\cos(x) is:

cos(x)dx=sin(x)\int -\cos(x) \, dx = -\sin(x)

Evaluate the definite integral:

π4π4cos(x)dx=sin(π4)(sin(π4))\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} -\cos(x) \, dx = -\sin\left(\frac{\pi}{4}\right) - \left(-\sin\left(-\frac{\pi}{4}\right)\right)

Using sin(x)=sin(x)\sin(-x) = -\sin(x):

sin(π4)(sin(π4))=sin(π4)+sin(π4)-\sin\left(\frac{\pi}{4}\right) - \left(-\sin\left(-\frac{\pi}{4}\right)\right) = -\sin\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)

Thus:

π4π4cos(x)dx=0\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} -\cos(x) \, dx = 0

Step 3: Calculate the average value

Substitute into the formula:

Average Value=1π20=0\text{Average Value} = \frac{1}{\frac{\pi}{2}} \cdot 0 = 0

Final Answer:

The average value is 0.\text{The average value is } 0.

Graph:

I will now generate a graph of f(x)=cos(x)f(x) = -\cos(x) over the interval [π4,π4]\left[ -\frac{\pi}{4}, \frac{\pi}{4} \right] and indicate the average value.import numpy as np import matplotlib.pyplot as plt

Define the function

x = np.linspace(-np.pi/4, np.pi/4, 500) y = -np.cos(x)

Plot the function

plt.figure(figsize=(8, 6)) plt.plot(x, y, label=r"$f(x) = -\cos(x)$", linewidth=2) plt.axhline(0, color="red", linestyle="--", label="Average Value = 0") plt.axvline(-np.pi/4, color="gray", linestyle=":", label=r"$x = -\frac{\pi}{4}$") plt.axvline(np.pi/4, color="gray", linestyle=":", label=r"$x = \frac{\pi}{4}$")

Add labels and legend

plt.title("Graph of $f(x) = -\cos(x)$ with Average Value Indicated") plt.xlabel("$x$") plt.ylabel("$f(x)$") plt.legend() plt.grid() plt.show() <<ImageDisplayed>>successThe graph of f(x)=cos(x)f(x) = -\cos(x) over the interval [π4,π4]\left[ -\frac{\pi}{4}, \frac{\pi}{4} \right] is shown above. The red dashed line at y=0y = 0 represents the average value of the function.

Do you want further details or have any questions?

Related Questions:

  1. How does the average value change if the interval is expanded?
  2. What is the geometric interpretation of the average value in terms of the graph?
  3. Can the average value of a function be negative? Why or why not?
  4. How would the calculation differ if the function were cos(x)\cos(x) instead of cos(x)-\cos(x)?
  5. How do you compute the average value if the function has discontinuities?

Tip:

Always double-check the symmetry of the function and interval—it can simplify the computation significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integration
Average Value of a Function

Formulas

Average value formula: (1 / (b - a)) ∫[a to b] f(x) dx
Integral of -cos(x): -sin(x)

Theorems

Fundamental Theorem of Calculus
Symmetry properties of sine and cosine functions

Suitable Grade Level

Grades 11-12 (High School Advanced Math) or College Calculus