Math Problem Statement

Find the average value of

​f(x)equals=negative cosine x−cosx

over the interval

left bracket negative StartFraction pi Over 2 EndFraction comma StartFraction pi Over 2 EndFraction right bracket−π2,π2.

Draw a graph of the function and indicate the average value.

Question content area bottom

Part 1

The average value is

negative StartFraction 2 Over pi EndFraction−2π.

​(Type an exact​ answer, using

piπ

as​ needed.)

Solution

To find the average value of f(x)=cosxf(x) = -\cos x over the interval [π2,π2]\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right], we use the formula for the average value of a function:

Average value=1baabf(x)dx\text{Average value} = \frac{1}{b-a} \int_a^b f(x) \, dx

Step 1: Set up the formula

Here, a=π2a = -\frac{\pi}{2}, b=π2b = \frac{\pi}{2}, and f(x)=cosxf(x) = -\cos x. Substituting into the formula:

Average value=1π2(π2)π2π2cosxdx\text{Average value} = \frac{1}{\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} -\cos x \, dx

The length of the interval is:

ba=π2(π2)=πb - a = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi

So the formula simplifies to:

Average value=1ππ2π2cosxdx\text{Average value} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} -\cos x \, dx

Step 2: Compute the integral

The integral of cosx-\cos x is:

cosxdx=sinx\int -\cos x \, dx = -\sin x

Now evaluate the definite integral:

π2π2cosxdx=[sinx]π2π2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} -\cos x \, dx = \left[-\sin x\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}

Substitute the bounds:

sin(π2)(sin(π2))-\sin\left(\frac{\pi}{2}\right) - \left(-\sin\left(-\frac{\pi}{2}\right)\right)

Since sin(π2)=1\sin\left(\frac{\pi}{2}\right) = 1 and sin(π2)=1\sin\left(-\frac{\pi}{2}\right) = -1, we have:

sin(π2)(sin(π2))=1((1))=1+1=0-\sin\left(\frac{\pi}{2}\right) - (-\sin\left(-\frac{\pi}{2}\right)) = -1 - (-(-1)) = -1 + 1 = 0

Step 3: Multiply by 1π\frac{1}{\pi}

The average value is:

Average value=1π0=0\text{Average value} = \frac{1}{\pi} \cdot 0 = 0

Final Answer:

The average value of f(x)=cosxf(x) = -\cos x over [π2,π2]\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] is:

0\boxed{0}

Graph and Explanation:

I'll now plot the graph of f(x)=cosxf(x) = -\cos x over the interval [π2,π2]\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] and indicate the average value.import numpy as np import matplotlib.pyplot as plt

Define the function

def f(x): return -np.cos(x)

Define the interval

x = np.linspace(-np.pi/2, np.pi/2, 500) y = f(x)

Plot the function

plt.figure(figsize=(8, 6)) plt.plot(x, y, label=r"$f(x) = -\cos(x)$") plt.axhline(y=0, color='red', linestyle='--', label="Average Value (0)") plt.title("Graph of $f(x) = -\cos(x)$ with Average Value Indicated") plt.xlabel("$x$") plt.ylabel("$f(x)$") plt.axhline(0, color='black', linewidth=0.8, linestyle=':') # x-axis plt.axvline(0, color='black', linewidth=0.8, linestyle=':') # y-axis plt.legend() plt.grid(True) plt.show() <<ImageDisplayed>>successHere is the graph of f(x)=cos(x)f(x) = -\cos(x) over the interval [π2,π2]\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]. The red dashed line represents the average value, which is 00.

Let me know if you'd like further clarification or additional computations.

Related Questions:

  1. What is the physical interpretation of the average value of a function?
  2. Can we compute the average value of other trigonometric functions over similar intervals?
  3. How would the average value change if the interval is shifted or widened?
  4. What happens to the average value of f(x)=cos(x)f(x) = -\cos(x) over an interval longer than 2π2\pi?
  5. How does symmetry of the function influence the average value?

Tip:

The integral of an odd function over a symmetric interval [a,a][-a, a] is always 00, as their contributions on the left and right sides cancel out. This can save computation in many cases.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Trigonometric Functions

Formulas

Average value of a function: (1/(b-a)) ∫[a,b] f(x) dx

Theorems

Symmetry of odd functions over symmetric intervals

Suitable Grade Level

Grades 11-12