Math Problem Statement

Find two values of c in

− 𝜋 4 , 𝜋 4

such that f(c) is equal to the average value of f(x) = 4 cos(2x) on

− 𝜋 4 , 𝜋 4

. (Round your answers to three decimal places. Enter your answers as a comma-separated list.)

Solution

To find the two values of cc in (π4,π4)\left( -\frac{\pi}{4}, \frac{\pi}{4} \right) such that f(c)f(c) equals the average value of the function f(x)=4cos(2x)f(x) = 4 \cos(2x) on the interval (π4,π4)\left( -\frac{\pi}{4}, \frac{\pi}{4} \right), we need to follow these steps:

Step 1: Find the average value of f(x)f(x) on the interval (π4,π4)\left( -\frac{\pi}{4}, \frac{\pi}{4} \right).

The average value of a function f(x)f(x) on the interval [a,b][a, b] is given by the formula:

Average value of f(x)=1baabf(x)dx\text{Average value of } f(x) = \frac{1}{b - a} \int_a^b f(x) \, dx

For f(x)=4cos(2x)f(x) = 4 \cos(2x) and the interval (π4,π4)\left( -\frac{\pi}{4}, \frac{\pi}{4} \right), we have a=π4a = -\frac{\pi}{4} and b=π4b = \frac{\pi}{4}. So the average value becomes:

Average value of f(x)=1π4(π4)π4π44cos(2x)dx\text{Average value of } f(x) = \frac{1}{\frac{\pi}{4} - \left( -\frac{\pi}{4} \right)} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 4 \cos(2x) \, dx

Simplifying the interval length:

Average value of f(x)=1π2π4π44cos(2x)dx\text{Average value of } f(x) = \frac{1}{\frac{\pi}{2}} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 4 \cos(2x) \, dx

Step 2: Compute the integral of 4cos(2x)4 \cos(2x).

To solve this integral, we use the fact that the integral of cos(2x)\cos(2x) is 12sin(2x)\frac{1}{2} \sin(2x). So:

4cos(2x)dx=2sin(2x)\int 4 \cos(2x) \, dx = 2 \sin(2x)

Now, evaluating the definite integral:

π4π44cos(2x)dx=2sin(2π4)2sin(2(π4))\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 4 \cos(2x) \, dx = 2 \sin\left( 2 \cdot \frac{\pi}{4} \right) - 2 \sin\left( 2 \cdot \left( -\frac{\pi}{4} \right) \right)

=2sin(π2)2sin(π2)= 2 \sin\left( \frac{\pi}{2} \right) - 2 \sin\left( -\frac{\pi}{2} \right)

=2(1)2(1)=2+2=4= 2(1) - 2(-1) = 2 + 2 = 4

Step 3: Calculate the average value.

Now substitute this result into the formula for the average value:

Average value of f(x)=1π2×4=8π\text{Average value of } f(x) = \frac{1}{\frac{\pi}{2}} \times 4 = \frac{8}{\pi}

Average value of f(x)83.14162.546\text{Average value of } f(x) \approx \frac{8}{3.1416} \approx 2.546

Step 4: Find the values of cc such that f(c)=Average value of f(x)f(c) = \text{Average value of } f(x).

Now we need to find cc such that:

f(c)=4cos(2c)=2.546f(c) = 4 \cos(2c) = 2.546

Solve for cc:

cos(2c)=2.5464=0.6365\cos(2c) = \frac{2.546}{4} = 0.6365

Now take the inverse cosine:

2c=cos1(0.6365)2c = \cos^{-1}(0.6365)

Using a calculator:

2c0.8762c \approx 0.876

So:

c0.8762=0.438c \approx \frac{0.876}{2} = 0.438

Thus, one solution is c0.438c \approx 0.438.

Since the cosine function is periodic, we also have another solution within the given interval. The second solution is:

2c=0.876c0.8762=0.4382c = -0.876 \quad \Rightarrow \quad c \approx \frac{-0.876}{2} = -0.438

Thus, the two values of cc are approximately:

c0.438,0.438c \approx 0.438, -0.438

Final Answer:

The two values of cc are:

0.438,0.438\boxed{0.438, -0.438}

Let me know if you'd like further clarification or if you have any other questions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Average Value of a Function
Trigonometry
Inverse Trigonometric Functions

Formulas

Average value of f(x) = (1 / (b - a)) ∫_a^b f(x) dx
Integral of cos(2x) = (1 / 2) sin(2x)
Cosine function: cos(2c) = 0.6365

Theorems

Fundamental Theorem of Calculus
Cosine Identity
Inverse Cosine Function

Suitable Grade Level

Grades 11-12