Math Problem Statement

Compute the average value of the function f(x)=x sin(4x)f(x)=x sin(4x)  on the interval 0≤x≤π20≤x≤π2 .

Solution

To compute the average value of a function f(x)=xsin(4x)f(x) = x \sin(4x) on the interval [0,π2][0, \frac{\pi}{2}], we use the formula for the average value of a continuous function over an interval [a,b][a, b]:

Average value of f(x)=1baabf(x)dx\text{Average value of } f(x) = \frac{1}{b - a} \int_a^b f(x) \, dx

Here, a=0a = 0 and b=π2b = \frac{\pi}{2}, so the formula becomes:

Average value of f(x)=1π200π2xsin(4x)dx\text{Average value of } f(x) = \frac{1}{\frac{\pi}{2} - 0} \int_0^{\frac{\pi}{2}} x \sin(4x) \, dx

This simplifies to:

Average value of f(x)=2π0π2xsin(4x)dx\text{Average value of } f(x) = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} x \sin(4x) \, dx

Step 1: Compute the integral 0π2xsin(4x)dx\int_0^{\frac{\pi}{2}} x \sin(4x) \, dx

We can solve this integral using integration by parts. Let:

  • u=xu = x, so du=dxdu = dx,
  • dv=sin(4x)dxdv = \sin(4x) \, dx, so v=14cos(4x)v = -\frac{1}{4} \cos(4x).

Using the integration by parts formula udv=uvvdu\int u \, dv = uv - \int v \, du, we get:

xsin(4x)dx=x4cos(4x)+14cos(4x)dx\int x \sin(4x) \, dx = -\frac{x}{4} \cos(4x) + \frac{1}{4} \int \cos(4x) \, dx

Now, compute the second integral:

cos(4x)dx=14sin(4x)\int \cos(4x) \, dx = \frac{1}{4} \sin(4x)

Thus:

xsin(4x)dx=x4cos(4x)+116sin(4x)\int x \sin(4x) \, dx = -\frac{x}{4} \cos(4x) + \frac{1}{16} \sin(4x)

Step 2: Evaluate the definite integral from 0 to π2\frac{\pi}{2}

Now, we evaluate the integral:

0π2xsin(4x)dx=[x4cos(4x)+116sin(4x)]0π2\int_0^{\frac{\pi}{2}} x \sin(4x) \, dx = \left[ -\frac{x}{4} \cos(4x) + \frac{1}{16} \sin(4x) \right]_0^{\frac{\pi}{2}}

At x=π2x = \frac{\pi}{2}:

  • cos(4×π2)=cos(2π)=1\cos(4 \times \frac{\pi}{2}) = \cos(2\pi) = 1,
  • sin(4×π2)=sin(2π)=0\sin(4 \times \frac{\pi}{2}) = \sin(2\pi) = 0.

So, we get:

π241+1160=π8-\frac{\frac{\pi}{2}}{4} \cdot 1 + \frac{1}{16} \cdot 0 = -\frac{\pi}{8}

At x=0x = 0:

  • cos(4×0)=cos(0)=1\cos(4 \times 0) = \cos(0) = 1,
  • sin(4×0)=sin(0)=0\sin(4 \times 0) = \sin(0) = 0.

Thus:

041+1160=0-\frac{0}{4} \cdot 1 + \frac{1}{16} \cdot 0 = 0

So, the definite integral evaluates to:

0π2xsin(4x)dx=π80=π8\int_0^{\frac{\pi}{2}} x \sin(4x) \, dx = -\frac{\pi}{8} - 0 = -\frac{\pi}{8}

Step 3: Compute the average value

Now, multiply by the constant factor 2π\frac{2}{\pi}:

Average value of f(x)=2π×(π8)=14\text{Average value of } f(x) = \frac{2}{\pi} \times \left( -\frac{\pi}{8} \right) = -\frac{1}{4}

Thus, the average value of f(x)=xsin(4x)f(x) = x \sin(4x) on the interval [0,π2][0, \frac{\pi}{2}] is:

14\boxed{-\frac{1}{4}}


Would you like further details or explanations on any part of this solution?

Here are some related questions for further exploration:

  1. How do you apply integration by parts for different types of integrals?
  2. What is the physical interpretation of the average value of a function?
  3. Can you solve integrals involving products of trigonometric and polynomial functions using other methods?
  4. How does changing the limits of integration affect the average value?
  5. What are some common applications of the average value of a function in physics or engineering?

Tip: Remember to always check the behavior of trigonometric functions at the boundaries of your integration interval—they often simplify nicely at multiples of π\pi or 2π2\pi.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Integration by Parts
Average Value of a Function

Formulas

Average value of a function: 1/(b - a) * ∫_a^b f(x) dx
Integration by parts formula: ∫ u dv = uv - ∫ v du

Theorems

Integration by Parts
Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12