Math Problem Statement

17. (15) 已知函数f(x)=sin2x+sinx+cos2x.17\text{. (}15分)\text{ 已知函数}f\left(x\right)=\sin^2x+\sin x+\cos^2x\text{.} (1)(6)求函数f(x)的对称中心.\text{(}1)\left(6分\right)求函数f\left(x\right)的对称中心\text{.} (2)(9)若函数f(x)在区间[0, nπ2]上恰好有2024个零点, 求实数n的取值范围.\left(2\right)\left(9分\right)\,若函数f\left(x\right)在区间\left\lbrack0,\text{ }\frac{n\pi}{2}\right\rbrack上恰好有2024个零点\text{, 求实数}n的取值范围\text{.}

Solution

Given the function f(x)=sin2x+sinx+cos2xf(x) = \sin^2 x + \sin x + \cos^2 x, we will address both parts of the problem sequentially.

Part (1) Find the Symmetry Center of the Function f(x)f(x)

First, simplify the function f(x)f(x):

f(x)=sin2x+sinx+cos2xf(x) = \sin^2 x + \sin x + \cos^2 x

Using the Pythagorean identity, sin2x+cos2x=1\sin^2 x + \cos^2 x = 1:

f(x)=1+sinxf(x) = 1 + \sin x

This function is linear in terms of sinx\sin x, and we can analyze its symmetry properties. To check if it has any symmetry center, we

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Symmetry
Zero points of functions

Formulas

Pythagorean identity: $\sin^2 x + \cos^2 x = 1$

Theorems

-

Suitable Grade Level

High School