Math Problem Statement

17. (15) 已知函数f(x)=sin2x+sinx+cos2x.17\text{. (}15分)\text{ 已知函数}f\left(x\right)=\sin^2x+\sin x+\cos^2x\text{.} (1)(6)求函数f(x)的对称中心.\text{(}1)\left(6分\right)求函数f\left(x\right)的对称中心\text{.} (2)(9)若函数f(x)在区间[0, nπ2]上恰好有2024个零点, 求实数n的取值范围.\left(2\right)\left(9分\right)\,若函数f\left(x\right)在区间\left\lbrack0,\text{ }\frac{n\pi}{2}\right\rbrack上恰好有2024个零点\text{, 求实数}n的取值范围\text{.}

Solution

Let's analyze and solve the given problem step-by-step.

Problem Statement:

Given the function f(x)=sin2(x)+sin(x)+cos2(x)f(x) = \sin^2(x) + \sin(x) + \cos^2(x):

  1. Find the center of symmetry of the function f(x)f(x).
  2. Determine the range of the real number nn if the function f(x)f(x) has exactly 2024 zeros in the interval [0,nπ2]\left[0, \frac{n\pi}{2}\right].

Part 1: Finding the Center of Symmetry

First, we simplify the given function:

f(x)=sin2(x)+sin(x)+cos2(x)f(x) = \sin^2(x) + \sin(x) + \cos^2(x)

Using the Pythagorean identity sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1, we get:

f(x)=1+sin(x)f(x) = 1 + \sin(x)

Next, we need to check if the function ( f(x) =

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Symmetry
Zeroes of Functions

Formulas

Pythagorean identity: $\sin^2(x) + \cos^2(x) = 1$

Theorems

-

Suitable Grade Level

High School