Math Problem Statement
[(p ∨ q) ∧(~p)] → q
P1: P2:
Conclusión: Ley utilizada:
Solution
Para analizar el argumento lógico y determinar la ley utilizada, desglosamos la expresión dada:
Paso 1: Identificación de premisas
Podemos descomponer la expresión
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Propositional Logic
Logical Equivalence
Implication
Formulas
Implication formula: (A → B) ≡ (~A ∨ B)
Distributive property: A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C)
Theorems
Law of Implication
De Morgan's Laws
Distributive Laws
Suitable Grade Level
Undergraduate or Advanced High School (Grades 11-12)
Related Recommendation
Simplifying the Logical Implication (∼p ∨ q) ⇒ (∼p ∨ q)
Establishing Logical Equivalence: p → ((p→q) ∧ ~ (~q ∨ ~p)) = ~p ∨ (q ∧ p)
Logical Equivalence: Negation of Implication and Conjunction
Solving the Logical Implication (p ∨ q) ∧ (~p) → q with the Law of Resolution
Understanding Logical Equivalence: ¬(p∨q)∧¬(p∧q) ≡ ¬(p∨q)