Math Problem Statement

Use cylindrical coordinates to find the volume of the region bounded by the plane zequals0 and the hyperboloid zequalsStartRoot 10 EndRootminusStartRoot 1 plus x squared plus y squared EndRoot. Question content area bottom Part 1 The volume is    enter your response here. ​(Type an exact​ answer, using pi as​ needed.)

Solution

To find the volume of the region bounded by the plane z=0z = 0 and the hyperboloid z=101+x2+y2z = \sqrt{10} - \sqrt{1 + x^2 + y^2} using cylindrical coordinates, follow these steps:

Step 1: Set Up in Cylindrical Coordinates

In cylindrical coordinates:

  • x=rcos(θ)x = r \cos(\theta)
  • y=rsin(θ)y = r \sin(\theta)
  • z=zz = z
  • r=x2+y2r = \sqrt{x^2 + y^2}

The equation of the hyperboloid becomes: z=101+r2z = \sqrt{10} - \sqrt{1 + r^2}

Step 2: Define the Boundaries

  • The lower boundary is the plane z=0z = 0.
  • The upper boundary is given by z=101+r2z = \sqrt{10} - \sqrt{1 + r^2}.

Step 3: Determine the Limits of rr

To find the limits of rr, set z=0z = 0: 0=101+r21+r2=10r2=9r=30 = \sqrt{10} - \sqrt{1 + r^2} \Rightarrow \sqrt{1 + r^2} = \sqrt{10} \Rightarrow r^2 = 9 \Rightarrow r = 3 So, rr ranges from 0 to 3.

Step 4: Set Up the Integral

The volume element in cylindrical coordinates is dV=rdrdθdzdV = r \, dr \, d\theta \, dz.

The volume is given by the triple integral: V=02π030101+r2rdzdrdθV = \int_{0}^{2\pi} \int_{0}^{3} \int_{0}^{\sqrt{10} - \sqrt{1 + r^2}} r \, dz \, dr \, d\theta

Step 5: Evaluate the Integral

Integrate with respect to zz: 0101+r2rdz=r[z]0101+r2=r(101+r2)\int_{0}^{\sqrt{10} - \sqrt{1 + r^2}} r \, dz = r \left[ z \right]_{0}^{\sqrt{10} - \sqrt{1 + r^2}} = r (\sqrt{10} - \sqrt{1 + r^2})

Now, integrate with respect to rr: 03r(101+r2)dr=1003rdr03r1+r2dr\int_{0}^{3} r (\sqrt{10} - \sqrt{1 + r^2}) \, dr = \sqrt{10} \int_{0}^{3} r \, dr - \int_{0}^{3} r \sqrt{1 + r^2} \, dr

Step 6: Solve the Integrals

  1. For the first integral: 1003rdr=10[r22]03=1092=9102\sqrt{10} \int_{0}^{3} r \, dr = \sqrt{10} \left[ \frac{r^2}{2} \right]_{0}^{3} = \sqrt{10} \cdot \frac{9}{2} = \frac{9 \sqrt{10}}{2}

  2. For the second integral, use the substitution u=1+r2u = 1 + r^2, du=2rdrdu = 2r \, dr: 03r1+r2dr=12110udu=12[23u3/2]110\int_{0}^{3} r \sqrt{1 + r^2} \, dr = \frac{1}{2} \int_{1}^{10} \sqrt{u} \, du = \frac{1}{2} \left[ \frac{2}{3} u^{3/2} \right]_{1}^{10} Evaluating this gives: 12[23(103/213/2)]=13(20101)\frac{1}{2} \left[ \frac{2}{3} (10^{3/2} - 1^{3/2}) \right] = \frac{1}{3} (20 \sqrt{10} - 1)

Step 7: Combine the Results

Combine the results from both integrals: V=02π(910213(20101))dθV = \int_{0}^{2\pi} \left( \frac{9 \sqrt{10}}{2} - \frac{1}{3} (20 \sqrt{10} - 1) \right) d\theta V=02π(2710620106+13)dθV = \int_{0}^{2\pi} \left( \frac{27 \sqrt{10}}{6} - \frac{20 \sqrt{10}}{6} + \frac{1}{3} \right) d\theta V=02π(7106+13)dθV = \int_{0}^{2\pi} \left(\frac{7 \sqrt{10}}{6} + \frac{1}{3}\right) d\theta

Step 8: Integrate with Respect to θ\theta

Integrating over θ\theta: V=(7106+13)02πdθ=(7106+13)2πV = \left(\frac{7 \sqrt{10}}{6} + \frac{1}{3}\right) \int_{0}^{2\pi} d\theta = \left(\frac{7 \sqrt{10}}{6} + \frac{1}{3}\right) \cdot 2\pi

Final Answer

V=(7106+13)2π=7103π+2π3V = \left(\frac{7 \sqrt{10}}{6} + \frac{1}{3}\right) \cdot 2\pi = \frac{7 \sqrt{10}}{3}\pi + \frac{2\pi}{3}

The volume of the region is 710π3+2π3\frac{7 \sqrt{10} \pi}{3} + \frac{2\pi}{3}.

Would you like more details on any step or have any questions?

Here are 5 related questions:

  1. How would the problem change if the upper boundary was a different hyperboloid equation?
  2. What if the radius limit changed to r=2r = 2? How would the integral change?
  3. How can the volume of a paraboloid bounded by a plane be calculated?
  4. What are the differences between using cylindrical and spherical coordinates for this problem?
  5. How would we evaluate this volume if the region was bounded by a sphere instead?

Tip: For triple integrals, always visualize the region first to set up the limits of integration correctly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Cylindrical Coordinates
Volume of a Region
Triple Integrals
Hyperboloids

Formulas

x = r cos(θ), y = r sin(θ), z = z
r² = x² + y²
Volume element in cylindrical coordinates: dV = r dr dθ dz
Triple integral for volume: V = ∫∫∫ r dz dr dθ

Theorems

Triple Integral Theorem for Volume
Substitution Method for Integration

Suitable Grade Level

Undergraduate (Calculus III or Multivariable Calculus)