Math Problem Statement

Use compound angle formulas to verify cofunction identities, simplify expressions, and simplify a trigonometric ratio.

Solution

Let's solve the problems step-by-step based on the given image.


11. Verify the cofunction identities using compound angle formulas:

a) sinx=cos(π2x)\sin x = \cos\left(\frac{\pi}{2} - x\right)

  • Using the identity for cosine of a difference: cos(π2x)=sinx\cos\left(\frac{\pi}{2} - x\right) = \sin x This directly verifies the identity.

b) cosx=sin(π2x)\cos x = \sin\left(\frac{\pi}{2} - x\right)

  • Using the identity for sine of a difference: sin(π2x)=cosx\sin\left(\frac{\pi}{2} - x\right) = \cos x This directly verifies the identity.

12. Simplify each expression:

a) sin(π+x)+sin(πx)\sin(\pi + x) + \sin(\pi - x)

  • Using the sine addition and subtraction formulas: sin(π+x)=sinxandsin(πx)=sinx\sin(\pi + x) = -\sin x \quad \text{and} \quad \sin(\pi - x) = \sin x
  • Substituting: sin(π+x)+sin(πx)=sinx+sinx=0\sin(\pi + x) + \sin(\pi - x) = -\sin x + \sin x = 0

b) cos(x+π3)sin(x+π6)\cos\left(x + \frac{\pi}{3}\right) - \sin\left(x + \frac{\pi}{6}\right)

  • Using the formulas for cosine and sine of sums: cos(x+π3)=cosxcosπ3sinxsinπ3\cos\left(x + \frac{\pi}{3}\right) = \cos x \cos\frac{\pi}{3} - \sin x \sin\frac{\pi}{3} sin(x+π6)=sinxcosπ6+cosxsinπ6\sin\left(x + \frac{\pi}{6}\right) = \sin x \cos\frac{\pi}{6} + \cos x \sin\frac{\pi}{6}
  • Substituting values: cosπ3=12,sinπ3=32,cosπ6=32,sinπ6=12\cos\frac{\pi}{3} = \frac{1}{2}, \, \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}, \, \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}, \, \sin\frac{\pi}{6} = \frac{1}{2}
  • Expanding: cos(x+π3)=cosx12sinx32\cos\left(x + \frac{\pi}{3}\right) = \cos x \cdot \frac{1}{2} - \sin x \cdot \frac{\sqrt{3}}{2} sin(x+π6)=sinx32+cosx12\sin\left(x + \frac{\pi}{6}\right) = \sin x \cdot \frac{\sqrt{3}}{2} + \cos x \cdot \frac{1}{2}
  • Subtracting: cos(x+π3)sin(x+π6)=cosx12sinx32(sinx32+cosx12)\cos\left(x + \frac{\pi}{3}\right) - \sin\left(x + \frac{\pi}{6}\right) = \cos x \cdot \frac{1}{2} - \sin x \cdot \frac{\sqrt{3}}{2} - \left(\sin x \cdot \frac{\sqrt{3}}{2} + \cos x \cdot \frac{1}{2}\right) =0= 0

13. Simplify:

sin(f+g)+sin(fg)cos(f+g)+cos(fg)\frac{\sin(f + g) + \sin(f - g)}{\cos(f + g) + \cos(f - g)}

  • Using sum-to-product identities: sin(f+g)+sin(fg)=2sinfcosg\sin(f + g) + \sin(f - g) = 2 \sin f \cos g cos(f+g)+cos(fg)=2cosfcosg\cos(f + g) + \cos(f - g) = 2 \cos f \cos g
  • Substituting: sin(f+g)+sin(fg)cos(f+g)+cos(fg)=2sinfcosg2cosfcosg\frac{\sin(f + g) + \sin(f - g)}{\cos(f + g) + \cos(f - g)} = \frac{2 \sin f \cos g}{2 \cos f \cos g}
  • Simplify: sinfcosf=tanf\frac{\sin f}{\cos f} = \tan f
  • Final answer: tanf\tan f

Do you want further clarification or detailed explanations for any of these? Let me know!


Related Questions:

  1. How do the sum-to-product identities apply to trigonometric expressions?
  2. Can you derive the sine and cosine addition formulas step-by-step?
  3. Why do the cofunction identities hold for all xx?
  4. How can you simplify similar trigonometric ratios without a calculator?
  5. What are the common mistakes to avoid when applying these identities?

Tip:

Always remember to verify your results by substituting specific values for the variables to ensure consistency!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Identities
Cofunction Identities
Compound Angles
Simplification of Trigonometric Expressions

Formulas

cos(A - B) = cos A cos B + sin A sin B
sin(A - B) = sin A cos B - cos A sin B
Sum-to-product identities: sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2), cos(A) + cos(B) = 2cos((A+B)/2)cos((A-B)/2)

Theorems

Trigonometric Cofunction Identities

Suitable Grade Level

Grades 11-12