Math Problem Statement

Simplify the following without the use of a calculator: \[\frac{\sin(90^\circ - x)}{\sin(360^\circ - x)} \div \tan(x - 180^\circ)\] \[\frac{\tan(205^\circ) \cdot \cos(315^\circ) \cdot \sin(135^\circ)}{\sin(210^\circ) \cdot \cos(150^\circ) \cdot \tan(25^\circ)}\]

Solution

Let’s start by simplifying each part of this problem step-by-step.

1. Simplifying the First Expression:

sin(90x)sin(360x)÷tan(x180)\frac{\sin(90^\circ - x)}{\sin(360^\circ - x)} \div \tan(x - 180^\circ)

Step 1.1: Simplify sin(90x)\sin(90^\circ - x)

Using the identity sin(90x)=cos(x)\sin(90^\circ - x) = \cos(x): sin(90x)=cos(x)\sin(90^\circ - x) = \cos(x)

Step 1.2: Simplify sin(360x)\sin(360^\circ - x)

Using the identity sin(360x)=sin(x)\sin(360^\circ - x) = -\sin(x): sin(360x)=sin(x)\sin(360^\circ - x) = -\sin(x)

Thus, the first part simplifies as follows: sin(90x)sin(360x)=cos(x)sin(x)=cot(x)\frac{\sin(90^\circ - x)}{\sin(360^\circ - x)} = \frac{\cos(x)}{-\sin(x)} = -\cot(x)

Step 1.3: Simplify tan(x180)\tan(x - 180^\circ)

Using the identity tan(x180)=tan(x)\tan(x - 180^\circ) = \tan(x): tan(x180)=tan(x)\tan(x - 180^\circ) = \tan(x)

Now, we have: cot(x)÷tan(x)-\cot(x) \div \tan(x)

Since cot(x)=1tan(x)\cot(x) = \frac{1}{\tan(x)}, this division simplifies to: cot(x)÷tan(x)=cot(x)1tan(x)=1-\cot(x) \div \tan(x) = -\cot(x) \cdot \frac{1}{\tan(x)} = -1

2. Simplifying the Second Expression:

tan(205)cos(315)sin(135)sin(210)cos(150)tan(25)\frac{\tan(205^\circ) \cdot \cos(315^\circ) \cdot \sin(135^\circ)}{\sin(210^\circ) \cdot \cos(150^\circ) \cdot \tan(25^\circ)}

Step 2.1: Evaluate Each Trigonometric Function

Using known trigonometric values:

  • tan(205)=tan(180+25)=tan(25)\tan(205^\circ) = \tan(180^\circ + 25^\circ) = \tan(25^\circ)
  • cos(315)=cos(36045)=cos(45)=22\cos(315^\circ) = \cos(360^\circ - 45^\circ) = \cos(45^\circ) = \frac{\sqrt{2}}{2}
  • sin(135)=sin(18045)=sin(45)=22\sin(135^\circ) = \sin(180^\circ - 45^\circ) = \sin(45^\circ) = \frac{\sqrt{2}}{2}
  • sin(210)=sin(180+30)=sin(30)=12\sin(210^\circ) = \sin(180^\circ + 30^\circ) = -\sin(30^\circ) = -\frac{1}{2}
  • cos(150)=cos(18030)=cos(30)=32\cos(150^\circ) = \cos(180^\circ - 30^\circ) = -\cos(30^\circ) = -\frac{\sqrt{3}}{2}
  • tan(25)=tan(25)\tan(25^\circ) = \tan(25^\circ)

Step 2.2: Substitute and Simplify

Substitute these values into the expression: tan(25)22221232tan(25)\frac{\tan(25^\circ) \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}}{-\frac{1}{2} \cdot -\frac{\sqrt{3}}{2} \cdot \tan(25^\circ)}

Simplify each part: =tan(25)2434tan(25)= \frac{\tan(25^\circ) \cdot \frac{2}{4}}{\frac{\sqrt{3}}{4} \cdot \tan(25^\circ)}

The tan(25)\tan(25^\circ) terms cancel, and we get: =2434=23=233= \frac{\frac{2}{4}}{\frac{\sqrt{3}}{4}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}

Final Answer:

The simplified expressions are:

  1. 1-1
  2. 233\frac{2\sqrt{3}}{3}

Would you like further details or clarification on any steps?


Here are some related questions to explore:

  1. What are the co-function identities in trigonometry?
  2. How do transformations affect trigonometric function values?
  3. Can trigonometric functions of negative angles be simplified?
  4. How does the ASTC rule (All Students Take Calculus) help with trigonometric simplifications?
  5. Why does tan(x180)=tan(x)\tan(x - 180^\circ) = \tan(x)?

Tip: Remember that trigonometric identities often simplify expressions significantly, especially in calculations without calculators.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle identities
Simplification

Formulas

sin(90° - x) = cos(x)
sin(360° - x) = -sin(x)
tan(x - 180°) = tan(x)
Cotangent and tangent identities

Theorems

Trigonometric identities
Co-function identities

Suitable Grade Level

Grade 11-12