Math Problem Statement

Prove:

  1. sin(x +pi/3) + sin(x - pi/3) = sin x
  2. cos (x + pi/4) cos (x - pi/4) = cos^2 x - 1/2
  3. tan (x - pi/4) = tan x - 1 / tan x + 1
  4. sin(x+y)-sin(x-y) / cos(x+y) + cos(x-y) = tan y

Solution

Let's delve into each of these identities one by one.

33. Prove:

sin(x+π3)+sin(xπ3)=sinx\sin\left(x + \frac{\pi}{3}\right) + \sin\left(x - \frac{\pi}{3}\right) = \sin x

Proof: Using the sine addition formula: sin(a+b)=sinacosb+cosasinb\sin(a + b) = \sin a \cos b + \cos a \sin b For a=xa = x and b=π3b = \frac{\pi}{3}: sin(x+π3)=sinxcos(π3)+cosxsin(π3)=sinx12+cosx32\sin\left(x + \frac{\pi}{3}\right) = \sin x \cos\left(\frac{\pi}{3}\right) + \cos x \sin\left(\frac{\pi}{3}\right) = \sin x \cdot \frac{1}{2} + \cos x \cdot \frac{\sqrt{3}}{2} Similarly, sin(xπ3)=sinxcos(π3)+cosxsin(π3)=sinx12cosx32\sin\left(x - \frac{\pi}{3}\right) = \sin x \cos\left(-\frac{\pi}{3}\right) + \cos x \sin\left(-\frac{\pi}{3}\right) = \sin x \cdot \frac{1}{2} - \cos x \cdot \frac{\sqrt{3}}{2} Adding these: sin(x+π3)+sin(xπ3)=(sinx12+cosx32)+(sinx12cosx32)=sinx\sin\left(x + \frac{\pi}{3}\right) + \sin\left(x - \frac{\pi}{3}\right) = \left(\sin x \cdot \frac{1}{2} + \cos x \cdot \frac{\sqrt{3}}{2}\right) + \left(\sin x \cdot \frac{1}{2} - \cos x \cdot \frac{\sqrt{3}}{2}\right) = \sin x

34. Prove:

cos(x+π4)cos(xπ4)=cos2x12\cos(x + \frac{\pi}{4}) \cos(x - \frac{\pi}{4}) = \cos^2 x - \frac{1}{2}

Proof: Using the cosine product-to-sum identity: cosAcosB=12(cos(A+B)+cos(AB))\cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B)) Let A=x+π4A = x + \frac{\pi}{4} and B=xπ4B = x - \frac{\pi}{4}: cos(x+π4)cos(xπ4)=12(cos(2x)+cos(π2))=12cos(2x)\cos\left(x + \frac{\pi}{4}\right) \cos\left(x - \frac{\pi}{4}\right) = \frac{1}{2} \left(\cos\left(2x\right) + \cos\left(\frac{\pi}{2}\right)\right) = \frac{1}{2} \cos(2x) Using the identity cos(2x)=2cos2x1\cos(2x) = 2\cos^2 x - 1: 12(2cos2x1)=cos2x12\frac{1}{2}(2\cos^2 x - 1) = \cos^2 x - \frac{1}{2}

35. Prove:

tan(xπ4)=tanx1tanx+1\tan(x - \frac{\pi}{4}) = \frac{\tan x - 1}{\tan x + 1}

Proof: Using the tangent subtraction formula: tan(ab)=tanatanb1+tanatanb\tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} Let a=xa = x and b=π4b = \frac{\pi}{4}: tan(xπ4)=tanxtan(π4)1+tanxtan(π4)=tanx11+tanx\tan\left(x - \frac{\pi}{4}\right) = \frac{\tan x - \tan\left(\frac{\pi}{4}\right)}{1 + \tan x \tan\left(\frac{\pi}{4}\right)} = \frac{\tan x - 1}{1 + \tan x}

36. Prove:

sin(x+y)sin(xy)cos(x+y)+cos(xy)=tany\frac{\sin(x+y) - \sin(x-y)}{\cos(x+y) + \cos(x-y)} = \tan y

Proof: Using sine and cosine subtraction formulas: sin(x+y)sin(xy)=2cosxsiny\sin(x+y) - \sin(x-y) = 2\cos x \sin y cos(x+y)+cos(xy)=2cosxcosy\cos(x+y) + \cos(x-y) = 2\cos x \cos y Thus: 2cosxsiny2cosxcosy=sinycosy=tany\frac{2\cos x \sin y}{2\cos x \cos y} = \frac{\sin y}{\cos y} = \tan y

These identities are now proven. Would you like to delve deeper into any specific proof or explore related concepts? Here are some questions you might consider:

  1. How can these identities be applied in solving trigonometric equations?
  2. What are some graphical interpretations of these trigonometric identities?
  3. Can you derive similar identities using different angles?
  4. How do these identities simplify calculus problems involving trigonometric functions?
  5. What are the common pitfalls when proving trigonometric identities?

Tip: Always simplify both sides of the equation independently before concluding they are equal.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities

Formulas

sin(a + b) = sin a cos b + cos a sin b
cos A cos B = (1/2)(cos(A+B) + cos(A-B))
tan(a - b) = (tan a - tan b) / (1 + tan a tan b)

Theorems

Sine and Cosine Addition and Subtraction Formulas
Cosine Product-to-Sum Identity
Tangent Subtraction Formula

Suitable Grade Level

Grades 11-12