Math Problem Statement

Find the velocity, acceleration, and speed of a particle with position function r(t) = ⟨et, cos(πt), ln(t)⟩ at t = 2.

Solution

Given the position function of the particle:

r(t)=et,cos(πt),ln(t)\mathbf{r}(t) = \langle e^t, \cos(\pi t), \ln(t) \rangle

We are tasked with finding the velocity, acceleration, and speed of the particle at t=2t = 2.

1. Velocity

The velocity v(t)\mathbf{v}(t) is the derivative of the position function r(t)\mathbf{r}(t) with respect to tt:

v(t)=ddtr(t)=ddtet,ddtcos(πt),ddtln(t)\mathbf{v}(t) = \frac{d}{dt}\mathbf{r}(t) = \left\langle \frac{d}{dt}e^t, \frac{d}{dt}\cos(\pi t), \frac{d}{dt}\ln(t) \right\rangle

Calculating each component:

  • ddtet=et\frac{d}{dt}e^t = e^t
  • ddtcos(πt)=πsin(πt)\frac{d}{dt}\cos(\pi t) = -\pi \sin(\pi t)
  • ddtln(t)=1t\frac{d}{dt}\ln(t) = \frac{1}{t}

Thus, the velocity function is:

v(t)=et,πsin(πt),1t\mathbf{v}(t) = \langle e^t, -\pi \sin(\pi t), \frac{1}{t} \rangle

Now, substituting t=2t = 2:

v(2)=e2,πsin(2π),12=e2,0,12\mathbf{v}(2) = \langle e^2, -\pi \sin(2\pi), \frac{1}{2} \rangle = \langle e^2, 0, \frac{1}{2} \rangle

2. Acceleration

The acceleration a(t)\mathbf{a}(t) is the derivative of the velocity function v(t)\mathbf{v}(t):

a(t)=ddtv(t)=ddtet,ddt(πsin(πt)),ddt1t\mathbf{a}(t) = \frac{d}{dt}\mathbf{v}(t) = \left\langle \frac{d}{dt}e^t, \frac{d}{dt}(-\pi \sin(\pi t)), \frac{d}{dt}\frac{1}{t} \right\rangle

Calculating each component:

  • ddtet=et\frac{d}{dt}e^t = e^t
  • ddt(πsin(πt))=π2cos(πt)\frac{d}{dt}(-\pi \sin(\pi t)) = -\pi^2 \cos(\pi t)
  • ddt1t=1t2\frac{d}{dt}\frac{1}{t} = -\frac{1}{t^2}

Thus, the acceleration function is:

a(t)=et,π2cos(πt),1t2\mathbf{a}(t) = \langle e^t, -\pi^2 \cos(\pi t), -\frac{1}{t^2} \rangle

Substituting t=2t = 2:

a(2)=e2,π2cos(2π),14=e2,π2,14\mathbf{a}(2) = \langle e^2, -\pi^2 \cos(2\pi), -\frac{1}{4} \rangle = \langle e^2, -\pi^2, -\frac{1}{4} \rangle

3. Speed

The speed is the magnitude of the velocity vector v(t)\mathbf{v}(t). The formula for the magnitude is:

Speed=v(t)=v12+v22+v32\text{Speed} = |\mathbf{v}(t)| = \sqrt{v_1^2 + v_2^2 + v_3^2}

At t=2t = 2, the velocity vector is:

v(2)=e2,0,12\mathbf{v}(2) = \langle e^2, 0, \frac{1}{2} \rangle

So, the speed at t=2t = 2 is:

Speed=(e2)2+02+(12)2=e4+14\text{Speed} = \sqrt{(e^2)^2 + 0^2 + \left(\frac{1}{2}\right)^2} = \sqrt{e^4 + \frac{1}{4}}

Thus, the speed at t=2t = 2 is:

Speed=e4+14\text{Speed} = \sqrt{e^4 + \frac{1}{4}}

Final Results:

  • Velocity at t=2t = 2: e2,0,12\langle e^2, 0, \frac{1}{2} \rangle
  • Acceleration at t=2t = 2: e2,π2,14\langle e^2, -\pi^2, -\frac{1}{4} \rangle
  • Speed at t=2t = 2: e4+14\sqrt{e^4 + \frac{1}{4}}

Do you want further details or have any questions?

Related Questions:

  1. How does the velocity change with respect to time?
  2. How can we determine if the particle is speeding up or slowing down at t=2t = 2?
  3. How does acceleration affect the motion of the particle?
  4. What is the significance of the velocity components being zero in certain directions?
  5. How would we find the direction of motion at t=2t = 2?

Tip:

The magnitude of the velocity vector always gives the particle's instantaneous speed, even if some velocity components are zero.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Derivatives
Velocity
Acceleration
Speed

Formulas

Velocity: v(t) = dr(t)/dt = ⟨d/dt e^t, d/dt cos(πt), d/dt ln(t)⟩
Acceleration: a(t) = dv(t)/dt = ⟨d/dt e^t, d/dt (-π sin(πt)), d/dt (1/t)⟩
Speed: |v(t)| = sqrt(v1^2 + v2^2 + v3^2)

Theorems

Fundamental Theorem of Calculus
Chain Rule for Derivatives

Suitable Grade Level

Undergraduate (Calculus II or III)