Math Problem Statement

The acceleration of a particle at time t is given by a(t) = ⟨t,et,sin(2t)⟩. Given that the velocity at t = 0 is equal to v(0) = ⟨1,1,1⟩ and the position at t = 0 is r(0) = ⟨0,0,0⟩ find the formula for the position vector r(t)

Solution

To find the position vector r(t)r(t), we will need to integrate the given acceleration vector twice.

Step 1: Find the velocity vector v(t)v(t)

The acceleration vector a(t)=t,et,sin(2t)a(t) = \langle t, e^t, \sin(2t) \rangle is the derivative of the velocity vector v(t)v(t). To find v(t)v(t), we integrate each component of a(t)a(t).

v(t)=a(t)dt=t,et,sin(2t)dtv(t) = \int a(t) \, dt = \int \langle t, e^t, \sin(2t) \rangle \, dt

First component:

tdt=t22+C1\int t \, dt = \frac{t^2}{2} + C_1

Second component:

etdt=et+C2\int e^t \, dt = e^t + C_2

Third component:

sin(2t)dt=12cos(2t)+C3\int \sin(2t) \, dt = -\frac{1}{2} \cos(2t) + C_3

Thus, the velocity vector is: v(t)=t22+C1,et+C2,12cos(2t)+C3v(t) = \left\langle \frac{t^2}{2} + C_1, e^t + C_2, -\frac{1}{2} \cos(2t) + C_3 \right\rangle

Now, we apply the initial condition v(0)=1,1,1v(0) = \langle 1, 1, 1 \rangle to determine the constants C1,C2,C3C_1, C_2, C_3.

At t=0t = 0: v(0)=022+C1,e0+C2,12cos(0)+C3=1,1,1v(0) = \left\langle \frac{0^2}{2} + C_1, e^0 + C_2, -\frac{1}{2} \cos(0) + C_3 \right\rangle = \langle 1, 1, 1 \rangle C1,1+C2,12+C3=1,1,1\Rightarrow \langle C_1, 1 + C_2, -\frac{1}{2} + C_3 \rangle = \langle 1, 1, 1 \rangle

From this, we get: C1=1,C2=0,C3=32C_1 = 1, \quad C_2 = 0, \quad C_3 = \frac{3}{2}

Thus, the velocity vector is: v(t)=t22+1,et,12cos(2t)+32v(t) = \left\langle \frac{t^2}{2} + 1, e^t, -\frac{1}{2} \cos(2t) + \frac{3}{2} \right\rangle

Step 2: Find the position vector r(t)r(t)

To find the position vector r(t)r(t), we integrate the velocity vector:

r(t)=v(t)dt=t22+1,et,12cos(2t)+32dtr(t) = \int v(t) \, dt = \int \left\langle \frac{t^2}{2} + 1, e^t, -\frac{1}{2} \cos(2t) + \frac{3}{2} \right\rangle \, dt

First component:

(t22+1)dt=t36+t+D1\int \left( \frac{t^2}{2} + 1 \right) \, dt = \frac{t^3}{6} + t + D_1

Second component:

etdt=et+D2\int e^t \, dt = e^t + D_2

Third component:

(12cos(2t)+32)dt=14sin(2t)+32t+D3\int \left( -\frac{1}{2} \cos(2t) + \frac{3}{2} \right) \, dt = -\frac{1}{4} \sin(2t) + \frac{3}{2}t + D_3

Thus, the position vector is: r(t)=t36+t+D1,et+D2,14sin(2t)+32t+D3r(t) = \left\langle \frac{t^3}{6} + t + D_1, e^t + D_2, -\frac{1}{4} \sin(2t) + \frac{3}{2} t + D_3 \right\rangle

Now, we apply the initial condition r(0)=0,0,0r(0) = \langle 0, 0, 0 \rangle to determine the constants D1,D2,D3D_1, D_2, D_3.

At t=0t = 0: r(0)=036+0+D1,e0+D2,14sin(0)+320+D3=0,0,0r(0) = \left\langle \frac{0^3}{6} + 0 + D_1, e^0 + D_2, -\frac{1}{4} \sin(0) + \frac{3}{2} \cdot 0 + D_3 \right\rangle = \langle 0, 0, 0 \rangle D1,1+D2,D3=0,0,0\Rightarrow \langle D_1, 1 + D_2, D_3 \rangle = \langle 0, 0, 0 \rangle

From this, we get: D1=0,D2=1,D3=0D_1 = 0, \quad D_2 = -1, \quad D_3 = 0

Thus, the position vector is: r(t)=t36+t,et1,14sin(2t)+32tr(t) = \left\langle \frac{t^3}{6} + t, e^t - 1, -\frac{1}{4} \sin(2t) + \frac{3}{2} t \right\rangle

Final Answer:

The formula for the position vector is: r(t)=t36+t,et1,14sin(2t)+32tr(t) = \left\langle \frac{t^3}{6} + t, e^t - 1, -\frac{1}{4} \sin(2t) + \frac{3}{2} t \right\rangle

Would you like more details on any of these steps or further explanation?

Related Questions:

  1. How do you compute the velocity from an acceleration vector in general?
  2. Can this process be extended to higher-dimensional problems?
  3. How do initial conditions affect the constants of integration in vector calculus?
  4. What is the physical interpretation of integrating acceleration to find velocity and position?
  5. How would the result change if different initial conditions were given for velocity and position?

Tip:

Always apply the initial conditions after integrating to find the unknown constants—this ensures the solution matches the given conditions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Integration
Kinematics

Formulas

v(t) = ∫a(t) dt
r(t) = ∫v(t) dt

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Calculus