Math Problem Statement

In space V3, a Cartesian coordinate system (O, i, j, k) is fixed. A vector x perpendicular to vectors a = {1, 3, -3} and b = {3, -3, -3} satisfies the condition (x, c) = -192, where c = {-4, 0, -2}. Find the coordinates of the vector x.

Solution

Для решения задачи необходимо найти вектор x\vec{x}, который:

  1. Перпендикулярен векторам a\vec{a} и b\vec{b}, то есть: xa=0,xb=0.\vec{x} \cdot \vec{a} = 0, \quad \vec{x} \cdot \vec{b} = 0.

  2. Удовлетворяет условию скалярного произведения с c\vec{c}: xc=192.\vec{x} \cdot \vec{c} = -192.

Шаги решения:

  1. Найти векторное произведение a×b\vec{a} \times \vec{b}, так как оно даст вектор, перпендикулярный a\vec{a} и b\vec{b}.

  2. Построить общий вид вектора x\vec{x}, перпендикулярного a\vec{a} и b\vec{b}, через параметризацию.

  3. Использовать условие xc=192\vec{x} \cdot \vec{c} = -192 для нахождения коэффициентов.

Начнем вычисления. Define vectors a, b, and c from sympy import symbols, Matrix, solve

x1, x2, x3 = symbols('x1 x2 x3') a = Matrix([1, 3, -3]) b = Matrix([3, -3, -3]) c = Matrix([-4, 0, -2])

Compute the cross product of a and b (perpendicular to both a and b)

cross_product = a.cross(b)

Define vector x as a linear combination of the cross product

x = symbols('t') * cross_product

Add the condition x·c = -192

scalar_condition = x.dot(c) + 192

Solve for parameter t

t_value = solve(scalar_condition, symbols('t'))[0]

Substitute t back into x

x_final = t_value * cross_product

x_final Redefine everything due to reset from sympy import symbols, Matrix, solve

Define variables

x1, x2, x3 = symbols('x1 x2 x3') t = symbols('t')

Define vectors a, b, and c

a = Matrix([1, 3, -3]) b = Matrix([3, -3, -3]) c = Matrix([-4, 0, -2])

Compute the cross product of a and b (perpendicular to both a and b)

cross_product = a.cross(b)

Define vector x as a linear combination of the cross product

x = t * cross_product

Add the condition x·c = -192

scalar_condition = x.dot(c) + 192

Solve for parameter t

t_value = solve(scalar_condition, t)[0]

Substitute t back into x

x_final = t_value * cross_product

x_finalВектор x\vec{x}, который удовлетворяет всем условиям, имеет координаты:

x={36,12,24}.\vec{x} = \{36, 12, 24\}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Cross Product
Scalar Product
Linear Equations

Formulas

Cross product: a × b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)
Scalar product condition: x · c = -192

Theorems

Cross product perpendicularity
Scalar product properties

Suitable Grade Level

Grades 10-12 or Undergraduate Level