Math Problem Statement

Виріши задачу

У паралелограмі OABC задані вектори \(\overrightarrow{OA} = \vec{a}\) та \(\overrightarrow{OB} = \vec{b}\). Вирахувати вектори \(\overrightarrow{MO}, \overrightarrow{MA}, \overrightarrow{MB}, \overrightarrow{MC}\), де \( M \) - точка перетину діагоналей.

Solution

The problem involves a parallelogram OABCOABC, where the vectors OA=a\overrightarrow{OA} = \vec{a} and OB=b\overrightarrow{OB} = \vec{b} are given. We need to express the vectors MO,MA,MB,MC\overrightarrow{MO}, \overrightarrow{MA}, \overrightarrow{MB}, \overrightarrow{MC} through the vectors a\vec{a} and b\vec{b}, where MM is the point of intersection of the diagonals of the parallelogram.

Solution:

Step 1: Define the relationship between the diagonals.

In a parallelogram, the diagonals bisect each other. So, the point MM is the midpoint of both diagonals.

The position vector of the point CC (the fourth vertex of the parallelogram) can be found using the properties of a parallelogram: OC=OA+OB=a+b\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB} = \vec{a} + \vec{b}

Step 2: Express MM as the midpoint of the diagonal.

Since MM is the midpoint of the diagonal ACAC, we can write the position vector of MM as: OM=OA+OC2=a+(a+b)2=2a+b2\overrightarrow{OM} = \frac{\overrightarrow{OA} + \overrightarrow{OC}}{2} = \frac{\vec{a} + (\vec{a} + \vec{b})}{2} = \frac{2\vec{a} + \vec{b}}{2} Thus, OM=a+b2\overrightarrow{OM} = \vec{a} + \frac{\vec{b}}{2}

Step 3: Express the vectors MO,MA,MB,MC\overrightarrow{MO}, \overrightarrow{MA}, \overrightarrow{MB}, \overrightarrow{MC}.

  • Vector MO\overrightarrow{MO}: MO=OMOO=OM=a+b2\overrightarrow{MO} = \overrightarrow{OM} - \overrightarrow{OO} = \overrightarrow{OM} = \vec{a} + \frac{\vec{b}}{2}

  • Vector MA\overrightarrow{MA}: MA=OAOM=a(a+b2)=b2\overrightarrow{MA} = \overrightarrow{OA} - \overrightarrow{OM} = \vec{a} - \left( \vec{a} + \frac{\vec{b}}{2} \right) = - \frac{\vec{b}}{2}

  • Vector MB\overrightarrow{MB}: MB=OBOM=b(a+b2)=bab2=b2a\overrightarrow{MB} = \overrightarrow{OB} - \overrightarrow{OM} = \vec{b} - \left( \vec{a} + \frac{\vec{b}}{2} \right) = \vec{b} - \vec{a} - \frac{\vec{b}}{2} = \frac{\vec{b}}{2} - \vec{a}

  • Vector MC\overrightarrow{MC}: MC=OCOM=(a+b)(a+b2)=a+bab2=b2\overrightarrow{MC} = \overrightarrow{OC} - \overrightarrow{OM} = (\vec{a} + \vec{b}) - \left( \vec{a} + \frac{\vec{b}}{2} \right) = \vec{a} + \vec{b} - \vec{a} - \frac{\vec{b}}{2} = \frac{\vec{b}}{2}

Final expressions:

  • MO=a+b2\overrightarrow{MO} = \vec{a} + \frac{\vec{b}}{2}
  • MA=b2\overrightarrow{MA} = -\frac{\vec{b}}{2}
  • MB=b2a\overrightarrow{MB} = \frac{\vec{b}}{2} - \vec{a}
  • MC=b2\overrightarrow{MC} = \frac{\vec{b}}{2}

Let me know if you need further clarification or details!

Related Questions:

  1. How do you find the midpoint of a vector in a different geometric shape, like a triangle?
  2. How does the property of diagonals differ in other quadrilaterals like rhombuses or rectangles?
  3. Can these expressions be generalized for any parallelogram with arbitrary diagonal lengths?
  4. How would this problem change if the shape was a trapezoid rather than a parallelogram?
  5. What would the vector MC\overrightarrow{MC} be if the point MM wasn't the midpoint of the diagonal?

Tip:

When solving vector problems in geometry, always rely on geometric properties like midpoints, bisectors, and parallelogram rules to simplify vector calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Parallelograms
Midpoint
Vector Algebra

Formulas

Position of midpoint: \( \overrightarrow{OM} = \frac{\overrightarrow{OA} + \overrightarrow{OC}}{2} \)
Vector operations: subtraction and addition of vectors

Theorems

Diagonals of a parallelogram bisect each other

Suitable Grade Level

Grades 9-12