Math Problem Statement

**[–/3 Points]**Details

My Notes

SAlgTrig4 9.2.021.

Practice Another

Find the indicated quantity, assuming that u = 4i + jv = i − 3j, and w = 3i + 2j.

u · v + u · w

**[–/2 Points]**Details

My Notes

SAlgTrig4 9.2.022.

Practice Another

Find the indicated quantity, assuming that u = 5i + jv = i − 3j, and w = 3i + 7j.

u · (v + w)

**[–/3 Points]**Details

My Notes

SAlgTrig4 9.2.023.

Practice Another

Find the indicated quantity, assuming that u = 5i + jv = i − 3j, and w = 3i + 2j.

(u + v· (u − v)

Solution

Let's solve each problem step-by-step.


Problem 7: uv+uw\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}

Given:
u=4i+j,v=i3j,w=3i+2j\mathbf{u} = 4\mathbf{i} + \mathbf{j}, \quad \mathbf{v} = \mathbf{i} - 3\mathbf{j}, \quad \mathbf{w} = 3\mathbf{i} + 2\mathbf{j}

Step 1: Compute uv\mathbf{u} \cdot \mathbf{v}

The dot product is given by: uv=(4)(1)+(1)(3)=43=1\mathbf{u} \cdot \mathbf{v} = (4)(1) + (1)(-3) = 4 - 3 = 1

Step 2: Compute uw\mathbf{u} \cdot \mathbf{w}

Similarly, for uw\mathbf{u} \cdot \mathbf{w}: uw=(4)(3)+(1)(2)=12+2=14\mathbf{u} \cdot \mathbf{w} = (4)(3) + (1)(2) = 12 + 2 = 14

Step 3: Add the results

uv+uw=1+14=15\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} = 1 + 14 = 15

Answer: 1515


Problem 8: u(v+w)\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})

Given:
u=5i+j,v=i3j,w=3i+7j\mathbf{u} = 5\mathbf{i} + \mathbf{j}, \quad \mathbf{v} = \mathbf{i} - 3\mathbf{j}, \quad \mathbf{w} = 3\mathbf{i} + 7\mathbf{j}

Step 1: Compute v+w\mathbf{v} + \mathbf{w}

Add the components of v\mathbf{v} and w\mathbf{w}: v+w=(i3j)+(3i+7j)=(1+3)i+(3+7)j=4i+4j\mathbf{v} + \mathbf{w} = (\mathbf{i} - 3\mathbf{j}) + (3\mathbf{i} + 7\mathbf{j}) = (1 + 3)\mathbf{i} + (-3 + 7)\mathbf{j} = 4\mathbf{i} + 4\mathbf{j}

Step 2: Compute u(v+w)\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})

The dot product is: u(v+w)=(5)(4)+(1)(4)=20+4=24\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = (5)(4) + (1)(4) = 20 + 4 = 24

Answer: 2424


Problem 9: (u+v)(uv)(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})

Given:
u=5i+j,v=i3j\mathbf{u} = 5\mathbf{i} + \mathbf{j}, \quad \mathbf{v} = \mathbf{i} - 3\mathbf{j}

Step 1: Compute u+v\mathbf{u} + \mathbf{v}

Add the components: u+v=(5i+j)+(i3j)=(5+1)i+(13)j=6i2j\mathbf{u} + \mathbf{v} = (5\mathbf{i} + \mathbf{j}) + (\mathbf{i} - 3\mathbf{j}) = (5 + 1)\mathbf{i} + (1 - 3)\mathbf{j} = 6\mathbf{i} - 2\mathbf{j}

Step 2: Compute uv\mathbf{u} - \mathbf{v}

Subtract the components: uv=(5i+j)(i3j)=(51)i+(1+3)j=4i+4j\mathbf{u} - \mathbf{v} = (5\mathbf{i} + \mathbf{j}) - (\mathbf{i} - 3\mathbf{j}) = (5 - 1)\mathbf{i} + (1 + 3)\mathbf{j} = 4\mathbf{i} + 4\mathbf{j}

Step 3: Compute the dot product

(u+v)(uv)=(6)(4)+(2)(4)=248=16(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = (6)(4) + (-2)(4) = 24 - 8 = 16

Answer: 1616


Summary of Answers:

  1. uv+uw=15\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} = 15
  2. u(v+w)=24\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = 24
  3. (u+v)(uv)=16(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = 16

Do you want details or have any questions? Here are 5 related problems you could try:

  1. Compute uw\mathbf{u} \cdot \mathbf{w} where u=2i3j\mathbf{u} = 2\mathbf{i} - 3\mathbf{j} and w=4i+5j\mathbf{w} = 4\mathbf{i} + 5\mathbf{j}.
  2. Verify if vw=0\mathbf{v} \cdot \mathbf{w} = 0 implies perpendicularity.
  3. Find u\| \mathbf{u} \| where u=7i+4j\mathbf{u} = 7\mathbf{i} + 4\mathbf{j}.
  4. Evaluate (uw)(u+w)(\mathbf{u} - \mathbf{w}) \cdot (\mathbf{u} + \mathbf{w}).
  5. Determine the angle between v\mathbf{v} and w\mathbf{w}.

Tip: Remember, the dot product is zero when two vectors are perpendicular!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Operations
Dot Product
Vector Addition and Subtraction

Formulas

Dot product: u · v = u1 * v1 + u2 * v2
Vector addition: u + v = (u1 + v1)i + (u2 + v2)j
Vector subtraction: u - v = (u1 - v1)i + (u2 - v2)j

Theorems

Properties of the Dot Product
Distributive Property of Vectors

Suitable Grade Level

Grades 10-12