Math Problem Statement

For the following exercise, use the vectors u=i-3j and v=2i+3j .

Find 2u-3v

Solution

Given the vectors u=i3j\mathbf{u} = \mathbf{i} - 3\mathbf{j} and v=2i+3j\mathbf{v} = 2\mathbf{i} + 3\mathbf{j}, we need to find 2u3v2\mathbf{u} - 3\mathbf{v}.

Let's break this down step by step:

  1. Multiply vector u\mathbf{u} by 2: 2u=2(i3j)=2i6j2\mathbf{u} = 2(\mathbf{i} - 3\mathbf{j}) = 2\mathbf{i} - 6\mathbf{j}

  2. Multiply vector v\mathbf{v} by 3: 3v=3(2i+3j)=6i+9j3\mathbf{v} = 3(2\mathbf{i} + 3\mathbf{j}) = 6\mathbf{i} + 9\mathbf{j}

  3. Subtract 3v3\mathbf{v} from 2u2\mathbf{u}: 2u3v=(2i6j)(6i+9j)2\mathbf{u} - 3\mathbf{v} = (2\mathbf{i} - 6\mathbf{j}) - (6\mathbf{i} + 9\mathbf{j}) =(2i6i)+(6j9j)= (2\mathbf{i} - 6\mathbf{i}) + (-6\mathbf{j} - 9\mathbf{j}) =4i15j= -4\mathbf{i} - 15\mathbf{j}

Thus, 2u3v=4i15j2\mathbf{u} - 3\mathbf{v} = -4\mathbf{i} - 15\mathbf{j}.

Would you like more details on this? If so, feel free to ask!

Here are five related questions for further exploration:

  1. What is the magnitude of the resulting vector 4i15j-4\mathbf{i} - 15\mathbf{j}?
  2. How would you find the angle between vectors u\mathbf{u} and v\mathbf{v}?
  3. What is the dot product of vectors u\mathbf{u} and v\mathbf{v}?
  4. What would be the result of 3u+2v3\mathbf{u} + 2\mathbf{v}?
  5. How can you express vector u\mathbf{u} in polar coordinates?

Tip: When performing vector operations, treat the components (i.e., the ii and jj components) separately and then combine the results at the end.