Math Problem Statement

For the following parameterized​ curve, find the unit tangent vector.

Bold r left parenthesis t right parenthesisr(t)equals=left angle 8 cosine left parenthesis t right parenthesis comma 8 sine left parenthesis t right parenthesis comma 7 cosine left parenthesis t right parenthesis right angle8cos(t),8sin(t),7cos(t)​,

for 0 less than or equals t less than or equals pi0≤t≤π

Question content area bottom

Part 1

Select the correct answer below​ and, if​ necessary, fill in the answer boxes within your choice.

A.

Bold Upper T left parenthesis t right parenthesisT(t)equals=left angle nothing comma nothing comma nothing right angleenter your response here,enter your response here,enter your response here

​(Type exact​ answers, using radicals as​ needed.)

B.

Since

Bold r prime left parenthesis t right parenthesis equals Bold 0r′(t)=0​,

there is no tangent vector.u

Solution

To find the unit tangent vector T(t) for the parameterized curve r(t), we need to follow these steps:

Given Curve:

r(t)=8cos(t),8sin(t),7cos(t)\mathbf{r}(t) = \langle 8\cos(t), 8\sin(t), 7\cos(t) \rangle where 0tπ0 \leq t \leq \pi.

Step 1: Find the derivative of r(t) (i.e., r'(t)):

To get the velocity vector (the derivative of the position vector):

[ \mathbf{r'}(t) = \left\langle \frac{d}{dt}[8\cos(t)], \frac{d}{dt}[8\sin(t)], \frac{d}{dt}[7\cos(t)] \right\rangle ] r(t)=8sin(t),8cos(t),7sin(t)\mathbf{r'}(t) = \langle -8\sin(t), 8\cos(t), -7\sin(t) \rangle

Step 2: Find the magnitude of r'(t) (i.e., r(t)|\mathbf{r'}(t)|):

The magnitude of r'(t) is:

r(t)=(8sin(t))2+(8cos(t))2+(7sin(t))2|\mathbf{r'}(t)| = \sqrt{(-8\sin(t))^2 + (8\cos(t))^2 + (-7\sin(t))^2} r(t)=64sin2(t)+64cos2(t)+49sin2(t)|\mathbf{r'}(t)| = \sqrt{64\sin^2(t) + 64\cos^2(t) + 49\sin^2(t)} r(t)=64(sin2(t)+cos2(t))+49sin2(t)|\mathbf{r'}(t)| = \sqrt{64(\sin^2(t) + \cos^2(t)) + 49\sin^2(t)} Since sin2(t)+cos2(t)=1\sin^2(t) + \cos^2(t) = 1, we simplify: r(t)=64+49sin2(t)|\mathbf{r'}(t)| = \sqrt{64 + 49\sin^2(t)} Thus, the magnitude of the derivative is: r(t)=64+49sin2(t)|\mathbf{r'}(t)| = \sqrt{64 + 49\sin^2(t)}

Step 3: Find the unit tangent vector T(t):

The unit tangent vector is given by: T(t)=r(t)r(t)\mathbf{T}(t) = \frac{\mathbf{r'}(t)}{|\mathbf{r'}(t)|} Substituting the components: T(t)=8sin(t),8cos(t),7sin(t)64+49sin2(t)\mathbf{T}(t) = \frac{\langle -8\sin(t), 8\cos(t), -7\sin(t) \rangle}{\sqrt{64 + 49\sin^2(t)}}

So, the unit tangent vector is: T(t)=8sin(t)64+49sin2(t),8cos(t)64+49sin2(t),7sin(t)64+49sin2(t)\mathbf{T}(t) = \left\langle \frac{-8\sin(t)}{\sqrt{64 + 49\sin^2(t)}}, \frac{8\cos(t)}{\sqrt{64 + 49\sin^2(t)}}, \frac{-7\sin(t)}{\sqrt{64 + 49\sin^2(t)}} \right\rangle

Final Answer:

Thus, the correct unit tangent vector is:

T(t)=8sin(t)64+49sin2(t),8cos(t)64+49sin2(t),7sin(t)64+49sin2(t)\mathbf{T}(t) = \left\langle \frac{-8\sin(t)}{\sqrt{64 + 49\sin^2(t)}}, \frac{8\cos(t)}{\sqrt{64 + 49\sin^2(t)}}, \frac{-7\sin(t)}{\sqrt{64 + 49\sin^2(t)}} \right\rangle

Answer Choice:

A.

If you have any further questions or need more details, feel free to ask!


Further Exploration:

  1. How do we find the unit normal vector from the unit tangent vector?
  2. How can we use the unit tangent vector to calculate the curvature of the curve?
  3. What is the significance of the unit tangent vector in the context of motion along a curve?
  4. Can the magnitude of r'(t) ever be zero? What would that imply?
  5. How does the derivative of the curve change when we modify the parametric equations?

Tip:

When calculating the magnitude of r'(t), always simplify the expression using trigonometric identities like sin2(t)+cos2(t)=1\sin^2(t) + \cos^2(t) = 1. This often makes the process easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Vector Calculus
Unit Tangent Vector

Formulas

r'(t) = ⟨d/dt[8cos(t)], d/dt[8sin(t)], d/dt[7cos(t)]⟩
|r'(t)| = √((-8sin(t))^2 + (8cos(t))^2 + (-7sin(t))^2)
T(t) = r'(t) / |r'(t)|

Theorems

Chain Rule
Pythagorean Identity

Suitable Grade Level

Grades 11-12