Math Problem Statement

Solve

Find the curve's unit tangent vector. Also, find the length of the indicated portion of the curve. r(t) = (4cos(t))i + (4sin(t))j + (√2)t k, 0 ≤ t ≤ π.

Solution

To solve the given problem, we need to:

  1. Find the unit tangent vector, T(t)\mathbf{T}(t).
  2. Find the length of the curve over the given interval, 0tπ0 \leq t \leq \pi.

The given vector function is:

r(t)=4cos(t)i+4sin(t)j+2tk.\mathbf{r}(t) = 4\cos(t) \, \mathbf{i} + 4\sin(t) \, \mathbf{j} + \sqrt{2} \, t \, \mathbf{k}.


Step 1: Find the unit tangent vector T(t)\mathbf{T}(t)

1.1: Compute r(t)\mathbf{r}'(t), the derivative of r(t)\mathbf{r}(t)

The derivative of r(t)\mathbf{r}(t) is calculated component by component:

r(t)=ddt(4cos(t))i+ddt(4sin(t))j+ddt(2t)k.\mathbf{r}'(t) = \frac{d}{dt} \big(4\cos(t)\big) \, \mathbf{i} + \frac{d}{dt} \big(4\sin(t)\big) \, \mathbf{j} + \frac{d}{dt} \big(\sqrt{2}t\big) \, \mathbf{k}.

r(t)=4sin(t)i+4cos(t)j+2k.\mathbf{r}'(t) = -4\sin(t) \, \mathbf{i} + 4\cos(t) \, \mathbf{j} + \sqrt{2} \, \mathbf{k}.

1.2: Compute the magnitude of r(t)\mathbf{r}'(t), r(t)\|\mathbf{r}'(t)\|

The magnitude of r(t)\mathbf{r}'(t) is:

r(t)=(4sin(t))2+(4cos(t))2+(2)2.\|\mathbf{r}'(t)\| = \sqrt{\big(-4\sin(t)\big)^2 + \big(4\cos(t)\big)^2 + \big(\sqrt{2}\big)^2}.

Simplify the terms:

r(t)=16sin2(t)+16cos2(t)+2.\|\mathbf{r}'(t)\| = \sqrt{16\sin^2(t) + 16\cos^2(t) + 2}.

Using the Pythagorean identity sin2(t)+cos2(t)=1\sin^2(t) + \cos^2(t) = 1, we get:

r(t)=16(1)+2=18=32.\|\mathbf{r}'(t)\| = \sqrt{16(1) + 2} = \sqrt{18} = 3\sqrt{2}.

1.3: Find the unit tangent vector T(t)\mathbf{T}(t)

The unit tangent vector is:

T(t)=r(t)r(t).\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}.

Substitute r(t)=4sin(t)i+4cos(t)j+2k\mathbf{r}'(t) = -4\sin(t) \, \mathbf{i} + 4\cos(t) \, \mathbf{j} + \sqrt{2} \, \mathbf{k} and r(t)=32\|\mathbf{r}'(t)\| = 3\sqrt{2}:

T(t)=4sin(t)32i+4cos(t)32j+232k.\mathbf{T}(t) = \frac{-4\sin(t)}{3\sqrt{2}} \, \mathbf{i} + \frac{4\cos(t)}{3\sqrt{2}} \, \mathbf{j} + \frac{\sqrt{2}}{3\sqrt{2}} \, \mathbf{k}.

Simplify:

T(t)=2sin(t)32i+2cos(t)32j+13k.\mathbf{T}(t) = \frac{-2\sin(t)}{3\sqrt{2}} \, \mathbf{i} + \frac{2\cos(t)}{3\sqrt{2}} \, \mathbf{j} + \frac{1}{3} \, \mathbf{k}.


Step 2: Find the length of the curve

The formula for the arc length is:

L=abr(t)dt.L = \int_a^b \|\mathbf{r}'(t)\| \, dt.

Here, r(t)=32\|\mathbf{r}'(t)\| = 3\sqrt{2} (calculated earlier), and the interval is 0tπ0 \leq t \leq \pi. Thus:

L=0π32dt.L = \int_0^\pi 3\sqrt{2} \, dt.

Since 323\sqrt{2} is a constant:

L=320π1dt.L = 3\sqrt{2} \int_0^\pi 1 \, dt.

L=32[t]0π=32(π0)=32π.L = 3\sqrt{2} \big[t\big]_0^\pi = 3\sqrt{2} \big(\pi - 0\big) = 3\sqrt{2} \pi.


Final Answers:

  1. The unit tangent vector is:

T(t)=2sin(t)32i+2cos(t)32j+13k.\mathbf{T}(t) = \frac{-2\sin(t)}{3\sqrt{2}} \, \mathbf{i} + \frac{2\cos(t)}{3\sqrt{2}} \, \mathbf{j} + \frac{1}{3} \, \mathbf{k}.

  1. The length of the curve is:

L=32π.L = 3\sqrt{2} \pi.


Would you like further clarifications or a breakdown of any step?
Here are five related questions you might explore:

  1. How is the arc length formula derived?
  2. What is the significance of a unit tangent vector?
  3. How would the solution change if the interval were different (e.g., [0,2π][0, 2\pi])?
  4. What is the geometric interpretation of the curve r(t)\mathbf{r}(t)?
  5. How can curvature or acceleration be computed for this curve?

Tip: Always double-check derivatives and magnitudes, as errors can propagate in multiple steps.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Parametric Curves
Unit Tangent Vectors
Arc Length

Formulas

Unit tangent vector formula T(t) = r'(t) / |r'(t)|
Arc length formula L = ∫ |r'(t)| dt

Theorems

Pythagorean Identity

Suitable Grade Level

Undergraduate - Calculus III