Math Problem Statement

Find the​ curve's unit tangent vector. Bold r left parenthesis t right parenthesis equals left parenthesis 2 cosine cubed t right parenthesis Bold j plus left parenthesis 2 sine cubed t right parenthesis Bold k​,     Question content area bottom Part 1 Find the​ curve's unit tangent vector. Bold Upper T​(t)equalsleft parenthesis nothing right parenthesis Bold j plus left parenthesis nothing right parenthesis Bold k       ​(Type exact​ answers, using radicals as​ needed.)

Solution

To find the unit tangent vector T(t)\mathbf{T}(t) of the given curve r(t)\mathbf{r}(t), follow these steps:

Given: r(t)=(2cos3(t))j+(2sin3(t))k\mathbf{r}(t) = \left( 2 \cos^3(t) \right) \mathbf{j} + \left( 2 \sin^3(t) \right) \mathbf{k}

Step 1: Find the derivative of r(t)\mathbf{r}(t)

The unit tangent vector T(t)\mathbf{T}(t) is found by first determining the velocity vector r(t)\mathbf{r}'(t), which is the derivative of r(t)\mathbf{r}(t) with respect to tt:

r(t)=ddt(2cos3(t))j+ddt(2sin3(t))k\mathbf{r}'(t) = \frac{d}{dt} \left( 2 \cos^3(t) \right) \mathbf{j} + \frac{d}{dt} \left( 2 \sin^3(t) \right) \mathbf{k}

Using the chain rule: ddt(2cos3(t))=23cos2(t)(sin(t))=6cos2(t)sin(t)\frac{d}{dt} \left( 2 \cos^3(t) \right) = 2 \cdot 3 \cos^2(t) \cdot (-\sin(t)) = -6 \cos^2(t) \sin(t) ddt(2sin3(t))=23sin2(t)cos(t)=6sin2(t)cos(t)\frac{d}{dt} \left( 2 \sin^3(t) \right) = 2 \cdot 3 \sin^2(t) \cdot \cos(t) = 6 \sin^2(t) \cos(t)

Thus, the velocity vector r(t)\mathbf{r}'(t) is: r(t)=6cos2(t)sin(t)j+6sin2(t)cos(t)k\mathbf{r}'(t) = -6 \cos^2(t) \sin(t) \mathbf{j} + 6 \sin^2(t) \cos(t) \mathbf{k}

Step 2: Find the magnitude of r(t)\mathbf{r}'(t)

The magnitude r(t)|\mathbf{r}'(t)| is: r(t)=(6cos2(t)sin(t))2+(6sin2(t)cos(t))2|\mathbf{r}'(t)| = \sqrt{\left( -6 \cos^2(t) \sin(t) \right)^2 + \left( 6 \sin^2(t) \cos(t) \right)^2}

Simplifying: r(t)=36cos4(t)sin2(t)+36sin4(t)cos2(t)|\mathbf{r}'(t)| = \sqrt{36 \cos^4(t) \sin^2(t) + 36 \sin^4(t) \cos^2(t)} r(t)=36cos2(t)sin2(t)(cos2(t)+sin2(t))|\mathbf{r}'(t)| = \sqrt{36 \cos^2(t) \sin^2(t) \left( \cos^2(t) + \sin^2(t) \right)} Since cos2(t)+sin2(t)=1\cos^2(t) + \sin^2(t) = 1, we have: r(t)=36cos2(t)sin2(t)|\mathbf{r}'(t)| = \sqrt{36 \cos^2(t) \sin^2(t)} r(t)=6cos(t)sin(t)|\mathbf{r}'(t)| = 6 |\cos(t) \sin(t)|

Step 3: Find the unit tangent vector

The unit tangent vector T(t)\mathbf{T}(t) is given by: T(t)=r(t)r(t)\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} Thus: T(t)=6cos2(t)sin(t)6cos(t)sin(t)j+6sin2(t)cos(t)6cos(t)sin(t)k\mathbf{T}(t) = \frac{-6 \cos^2(t) \sin(t)}{6 |\cos(t) \sin(t)|} \mathbf{j} + \frac{6 \sin^2(t) \cos(t)}{6 |\cos(t) \sin(t)|} \mathbf{k} T(t)=cos(t)cos(t)j+sin(t)sin(t)k\mathbf{T}(t) = -\frac{\cos(t)}{|\cos(t)|} \mathbf{j} + \frac{\sin(t)}{|\sin(t)|} \mathbf{k}

Hence, the unit tangent vector is: T(t)=sgn(cos(t))j+sgn(sin(t))k\mathbf{T}(t) = -\text{sgn}(\cos(t)) \mathbf{j} + \text{sgn}(\sin(t)) \mathbf{k}

Would you like any clarifications or further details on any part of this solution?

Here are 5 related questions to explore:

  1. How would you find the curvature of a given curve?
  2. Can the unit tangent vector ever be zero?
  3. What is the significance of the unit tangent vector in physics?
  4. How is the principal normal vector related to the tangent vector?
  5. What is the geometric interpretation of the velocity vector?

Tip: Always remember that the unit tangent vector represents the direction of motion at a given point on the curve.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Vector Calculus
Unit Tangent Vector
Parametric Curves

Formulas

Derivative of a vector function: r'(t)
Magnitude of a vector: |r'(t)| = sqrt((r'(t) · r'(t)))
Unit tangent vector: T(t) = r'(t) / |r'(t)|

Theorems

Pythagorean identity: cos^2(t) + sin^2(t) = 1
Chain rule for differentiation

Suitable Grade Level

Grades 11-12