Math Problem Statement

Find the unit tangent vector to the curve defined by r(t) = <2 cos(t), 2 sin(t), 5 sin²(t)> at t = π/2. Use the unit tangent vector to write the parametric equations of a tangent line to the curve at t = π/2.

Solution

Let's start by solving this step by step.

  1. Find the unit tangent vector T(π2)\mathbf{T} \left( \frac{\pi}{2} \right): We are given the vector-valued function: r(t)=2cos(t),2sin(t),5sin2(t)\mathbf{r}(t) = \langle 2 \cos(t), 2 \sin(t), 5 \sin^2(t) \rangle First, we compute the derivative r(t)\mathbf{r}'(t) to find the tangent vector: r(t)=ddt(2cos(t)),ddt(2sin(t)),ddt(5sin2(t))\mathbf{r}'(t) = \left\langle \frac{d}{dt}(2\cos(t)), \frac{d}{dt}(2\sin(t)), \frac{d}{dt}(5\sin^2(t)) \right\rangle Differentiating: r(t)=2sin(t),2cos(t),10sin(t)cos(t)\mathbf{r}'(t) = \langle -2 \sin(t), 2 \cos(t), 10 \sin(t) \cos(t) \rangle

    Now evaluate at t=π2t = \frac{\pi}{2}: r(π2)=2sin(π2),2cos(π2),10sin(π2)cos(π2)\mathbf{r}'\left( \frac{\pi}{2} \right) = \langle -2 \sin\left( \frac{\pi}{2} \right), 2 \cos\left( \frac{\pi}{2} \right), 10 \sin\left( \frac{\pi}{2} \right) \cos\left( \frac{\pi}{2} \right) \rangle Simplifying the trigonometric values: r(π2)=2,0,0\mathbf{r}'\left( \frac{\pi}{2} \right) = \langle -2, 0, 0 \rangle

  2. Find the unit tangent vector T(π2)\mathbf{T}\left( \frac{\pi}{2} \right): The unit tangent vector is given by: T(t)=r(t)r(t)\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} The magnitude of r(π2)\mathbf{r}'\left( \frac{\pi}{2} \right) is: r(π2)=(2)2+02+02=4=2|\mathbf{r}'\left( \frac{\pi}{2} \right)| = \sqrt{(-2)^2 + 0^2 + 0^2} = \sqrt{4} = 2 Therefore, the unit tangent vector is: T(π2)=122,0,0=1,0,0\mathbf{T}\left( \frac{\pi}{2} \right) = \frac{1}{2} \langle -2, 0, 0 \rangle = \langle -1, 0, 0 \rangle

  3. Find the parametric equations of the tangent line: The parametric equation of a tangent line at a point t=π2t = \frac{\pi}{2} is given by: r(t)=r(π2)+sT(π2)\mathbf{r}(t) = \mathbf{r}\left( \frac{\pi}{2} \right) + s \mathbf{T}\left( \frac{\pi}{2} \right) First, find r(π2)\mathbf{r}\left( \frac{\pi}{2} \right): r(π2)=2cos(π2),2sin(π2),5sin2(π2)\mathbf{r}\left( \frac{\pi}{2} \right) = \langle 2 \cos\left( \frac{\pi}{2} \right), 2 \sin\left( \frac{\pi}{2} \right), 5 \sin^2\left( \frac{\pi}{2} \right) \rangle Simplifying: r(π2)=0,2,5\mathbf{r}\left( \frac{\pi}{2} \right) = \langle 0, 2, 5 \rangle Now, substitute r(π2)=0,2,5\mathbf{r}\left( \frac{\pi}{2} \right) = \langle 0, 2, 5 \rangle and T(π2)=1,0,0\mathbf{T}\left( \frac{\pi}{2} \right) = \langle -1, 0, 0 \rangle: r(t)=0,2,5+s1,0,0=s,2,5\mathbf{r}(t) = \langle 0, 2, 5 \rangle + s \langle -1, 0, 0 \rangle = \langle -s, 2, 5 \rangle

    Therefore, the parametric equations of the tangent line are: x(t)=sx(t) = -s y(t)=2y(t) = 2 z(t)=5z(t) = 5

Let me know if you'd like further clarification or have any questions! Here are 5 questions you can explore related to this:

  1. How do you compute the derivative of a vector-valued function in higher dimensions?
  2. Why is finding the unit tangent vector important in calculus?
  3. What is the geometric interpretation of the tangent vector?
  4. How do you find parametric equations for lines in different contexts, such as curves in space?
  5. What role does the magnitude of the tangent vector play in defining the unit tangent vector?

Tip: Always check the trigonometric values (e.g., sin\sin and cos\cos) at special angles like π2\frac{\pi}{2}, π\pi, etc., as they simplify many expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Vector Calculus
Unit Tangent Vector
Parametric Equations

Formulas

Unit tangent vector: T(t) = r'(t) / |r'(t)|
Parametric equation of tangent line: r(t) = r(t0) + s T(t0)
Magnitude of vector: |v| = sqrt(v1² + v2² + v3²)

Theorems

Tangent Vector Theorem
Trigonometric Identities

Suitable Grade Level

College or Advanced High School (Grades 11-12)