Math Problem Statement

Consider the curve 

r(t) = 3 sin(t), 8t, 3 cos(t).

(a)

Find the unit tangent vector 

T(t).

T(t) =    (b)

Find the unit normal vector 

N(t).

N(t) =   

Solution

We are given the vector function r(t)=3sin(t),8t,3cos(t)\mathbf{r}(t) = \langle 3\sin(t), 8t, 3\cos(t) \rangle, and we need to find:

(a) The unit tangent vector T(t)\mathbf{T}(t). (b) The unit normal vector N(t)\mathbf{N}(t).

Part (a) - Finding the Unit Tangent Vector T(t)\mathbf{T}(t)

The unit tangent vector is given by: T(t)=r(t)r(t)\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} where r(t)\mathbf{r}'(t) is the derivative of r(t)\mathbf{r}(t) with respect to tt, and r(t)|\mathbf{r}'(t)| is its magnitude.

  1. Find r(t)\mathbf{r}'(t): r(t)=ddt3sin(t),8t,3cos(t)=3cos(t),8,3sin(t)\mathbf{r}'(t) = \frac{d}{dt} \langle 3\sin(t), 8t, 3\cos(t) \rangle = \langle 3\cos(t), 8, -3\sin(t) \rangle

  2. Find r(t)|\mathbf{r}'(t)| (the magnitude of r(t)\mathbf{r}'(t)): r(t)=(3cos(t))2+(8)2+(3sin(t))2=9cos2(t)+64+9sin2(t)|\mathbf{r}'(t)| = \sqrt{(3\cos(t))^2 + (8)^2 + (-3\sin(t))^2} = \sqrt{9\cos^2(t) + 64 + 9\sin^2(t)} Since cos2(t)+sin2(t)=1\cos^2(t) + \sin^2(t) = 1, we have: r(t)=9+64=73|\mathbf{r}'(t)| = \sqrt{9 + 64} = \sqrt{73}

  3. Find T(t)\mathbf{T}(t): Now, the unit tangent vector is: T(t)=r(t)r(t)=1733cos(t),8,3sin(t)\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{1}{\sqrt{73}} \langle 3\cos(t), 8, -3\sin(t) \rangle Thus, the unit tangent vector is: T(t)=3cos(t)73,873,3sin(t)73\mathbf{T}(t) = \left\langle \frac{3\cos(t)}{\sqrt{73}}, \frac{8}{\sqrt{73}}, \frac{-3\sin(t)}{\sqrt{73}} \right\rangle

Part (b) - Finding the Unit Normal Vector N(t)\mathbf{N}(t)

The unit normal vector N(t)\mathbf{N}(t) is given by: N(t)=T(t)T(t)\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} where T(t)\mathbf{T}'(t) is the derivative of T(t)\mathbf{T}(t), and T(t)|\mathbf{T}'(t)| is its magnitude.

  1. Find T(t)\mathbf{T}'(t): Differentiate T(t)\mathbf{T}(t) with respect to tt: T(t)=ddt3cos(t)73,873,3sin(t)73=3sin(t)73,0,3cos(t)73\mathbf{T}'(t) = \frac{d}{dt} \left\langle \frac{3\cos(t)}{\sqrt{73}}, \frac{8}{\sqrt{73}}, \frac{-3\sin(t)}{\sqrt{73}} \right\rangle = \left\langle \frac{-3\sin(t)}{\sqrt{73}}, 0, \frac{-3\cos(t)}{\sqrt{73}} \right\rangle

  2. Find T(t)|\mathbf{T}'(t)|: T(t)=(3sin(t)73)2+02+(3cos(t)73)2|\mathbf{T}'(t)| = \sqrt{\left( \frac{-3\sin(t)}{\sqrt{73}} \right)^2 + 0^2 + \left( \frac{-3\cos(t)}{\sqrt{73}} \right)^2} T(t)=9sin2(t)73+9cos2(t)73=9(sin2(t)+cos2(t))73=973=373|\mathbf{T}'(t)| = \sqrt{\frac{9\sin^2(t)}{73} + \frac{9\cos^2(t)}{73}} = \sqrt{\frac{9(\sin^2(t) + \cos^2(t))}{73}} = \sqrt{\frac{9}{73}} = \frac{3}{\sqrt{73}}

  3. Find N(t)\mathbf{N}(t): Now, the unit normal vector is: N(t)=T(t)T(t)=13733sin(t)73,0,3cos(t)73\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} = \frac{1}{\frac{3}{\sqrt{73}}} \left\langle \frac{-3\sin(t)}{\sqrt{73}}, 0, \frac{-3\cos(t)}{\sqrt{73}} \right\rangle N(t)=sin(t),0,cos(t)\mathbf{N}(t) = \left\langle -\sin(t), 0, -\cos(t) \right\rangle

Thus, the unit normal vector is: N(t)=sin(t),0,cos(t)\mathbf{N}(t) = \langle -\sin(t), 0, -\cos(t) \rangle

Summary:

  • T(t)=3cos(t)73,873,3sin(t)73\mathbf{T}(t) = \left\langle \frac{3\cos(t)}{\sqrt{73}}, \frac{8}{\sqrt{73}}, \frac{-3\sin(t)}{\sqrt{73}} \right\rangle
  • N(t)=sin(t),0,cos(t)\mathbf{N}(t) = \langle -\sin(t), 0, -\cos(t) \rangle

Would you like more details or clarification on any part? Here are some related questions you might consider:

  1. How do we find the binormal vector B(t)\mathbf{B}(t)?
  2. What is the geometric interpretation of the tangent and normal vectors?
  3. How do we find the curvature of the curve r(t)\mathbf{r}(t)?
  4. What is the relationship between the tangent and normal vectors?
  5. How can we generalize this approach to find vectors for any parametric curve?

Tip: The unit tangent vector always points in the direction of motion, while the unit normal vector points towards the center of curvature of the curve.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Parametric Curves
Unit Tangent Vector
Unit Normal Vector

Formulas

T(t) = r'(t) / |r'(t)|
N(t) = T'(t) / |T'(t)|

Theorems

Pythagorean Identity: cos^2(t) + sin^2(t) = 1

Suitable Grade Level

University Level (Calculus III or Multivariable Calculus)